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Abstract—Numerous studies demonstrate that browser finger-
printing is detrimental to users’ security and privacy. However,
little is known about the effects of browser fingerprinting
on Android hybrid apps – where a stripped-down Chromium
browser is integrated into an app. These apps expand the
attack surface by permitting two-way communication between
native apps and the web. This paper studies the impact of
browser fingerprinting on these embedded browsers. To this end,
we instrument the Android framework to record and extract
information leveraged for fingerprinting. We study over 60,000
apps, including the most popular apps from the Google play
store. We exemplify security flaws and severe information leaks in
popular apps like Instagram. Our study reveals that fingerprints
in hybrid apps potentially contain account-specific and device-
specific information that identifies users across multiple devices
uniquely. Besides, our results show that the hybrid app browser
does not always adhere to standard browser-specific privacy
policies.

Index Terms—Hybrid Apps, Android Webview, Privacy

I. INTRODUCTION

Browser fingerprinting is an effective method to identify
individuals based on information accessible through browser
settings while eliminating local information, e.g., in cookies.
Web pages capture distinguishable information about the user
and the environment, such as the timezone and locale. Several
websites leverage browser fingerprinting to detect botnets and
other harmful activities, such as an account accessed from
an unusual location or device. On the flip side, online entities
exploit fingerprinting to develop targeted advertisements, price
inflation for identified individuals, and targeted malware for
particular browser/operating system versions.

Multiple studies [1], [2], [3], [4], [5], [6], [7], [8], [9],
[10] acknowledged the privacy and security implication of
this topic in the last decade. The majority of these studies
targeted desktop browsers; however, recent years have seen a
technological shift towards mobile devices rather than desktop
PCs for internet browsing. A recent study [11] explored finger-
printing on mobile browsers and demonstrated fingerprinting
to be quite effective on mobile browsers. However, to the best
of our knowledge, there are no studies to understand the impact
of fingerprinting on hybrid apps.

Hybrid mobile apps integrate native and web components
into a single mobile application. Hybrid apps, on the surface,
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are native applications combined with web technologies such
as JavaScript. Hybrid apps offer advantages to developers as
they facilitate reusability across multiple platforms: Existing
web apps, e.g., login pages, may effortlessly be integrated
into multiple mobile platforms (e.g., iOS and Android) to
save time and development costs. In this work, we explore
the implications of browser fingerprinting on Android hybrid
apps. The Android framework provides the WebView [12]
class to embed web applications into a view of the Android
app displaying webpages in a Chromeless browser [13].

WebView also provides an active communication channel
between the native Android app and JavaScript in the browser.
JavaScript can access the Android app’s functionality through
shared objects, which grant web components strong capabil-
ities to access native Android APIs without the need to ask
for Android permissions individually. In contrast to Android’s
permission system, where users can authorize permissions just
once (perhaps in a completely different context), on the web,
users must approve sensitive access (e.g., location access) or
grant it for one day. However, a hybrid app’s inbuilt browser
inherits this permission (if the shared Android component has
this permission) without further user interference. There have
been multiple studies [14], [15], [16], [17] to understand the
security and privacy implications of hybrid apps in Android.
These studies demonstrate multiple scenarios where hybrid
apps are insecure with respect to users’ security and privacy.
Many hybrid apps use insecure protocols and send private
information to third-parties. Unfortunately, the impact of fin-
gerprinting the hybrid app’s inbuilt browser is still unknown.

In this work, we bridge the gap in understanding the
impact of hybrid apps’ browser fingerprinting. We perform
a large-scale study of fingerprints generated by hybrid An-
droid apps. In particular, we are interested in information
leakage, user tracking, and security implications arising from
the bridge communication capabilities of hybrid apps. The
bridge communication provides (potentially untrusted) web
components of hybrid apps access to the trusted native app’s
data and functionality. In this work, we explore how the
web counterparts of a hybrid app exploit these capabilities
to expose information via fingerprinting. Besides, we identify
the differences in fingerprinting between the stand-alone and
the browser in hybrid apps. To this end, we study over 60,000
apps, including the most popular apps from the Google play



store. To obtain the fingerprint of the hybrid app’s browser,
we employ dynamic instrumentation of WebView using the
Frida instrumentation framework [18]. Frida provides a dy-
namic instrumentation toolkit to inject code into the Android
Framework programmatically. In particular, Frida supports
overloading of existing methods of the Android Framework.
We develop a tool, CHARLIE, based on Frida to identify
and collect the browser fingerprints. CHARLIE instruments
the Android framework to overload the loadUrl, postUrl
methods of the WebView class, and the onLoadResource
method of WebViewClient. In particular, the instrumentation is
targeted to collect three key pieces of information; User Agents
string, custom headers, and URLs. URLs help identify the
unencrypted traffic originating from loadUrl. Custom headers
and the User Agents string help identify privacy leaks and
unique identifiers associated with the web request. Finally, we
exemplify the security flaws and information leaks on popular
apps like Instagram. In summary, our study reveals that some
apps’ fingerprints contain account-specific and device-specific
information that can be used to identify and link their users
over multiple devices uniquely. Besides, our results show that
the hybrid app browser does not always adhere to standard
browser-specific privacy policies.

To summarize, this study contributes the following:
• A Large-scale analysis of Hybrid app’s browser fin-

gerprinting We perform a large-scale analysis of the
Hybrid app’s browser fingerprinting. Our analysis helps
to understand the privacy and security implications of fin-
gerprinting on Android hybrid apps. We explore that the
hybrid app browser does not adhere to standard browser-
specific privacy policies due to customization inability.
Besides, many popular apps’ fingerprints contain account-
specific and device-specific information that can be used
to identify users over multiple devices uniquely.

• CHARLIE We develop a tool, CHARLIE, based on Frida
to identify and collect the browser fingerprints. We make
our tool public [19] for researchers to reuse and build
upon it.

• Dataset We open-source the datasets [19] used in our
study to help researchers and developers reproduce and
understand the implication of fingerprinting on hybrid
Android apps.

II. MOTIVATION AND BACKGROUND

Before delving into the details of our core framework and
the implications of browser fingerprinting in Android hybrid
apps, we provide a brief background of the techniques utilized
in our study.

A. Hybrid Apps

Android hybrid applications embody native Android parts
alongside web components. These apps enable developers to
reuse their existing web applications in their Android apps. To
enable hybrid apps, Android provides a set of APIs to facilitate
the communication among Android native app components
(primarily written in Java or Kotlin) and web components.

1
2 // Android side: exposing methods to JavaScript
3 public class BridgedClass {
4 public String name;

6 @JavascriptInterface
7 public void setValue(String x) {
8 this.name = x;
9 }

11 public String getValue (){
12 return this.name;
13 }
14 }
15 // Activity implementing WebView
16 @Override
17 protected void onCreate(Bundle savedInstanceState)

{
18 //some code
19 WebView wv = (WebView)

findViewById(R.id.webview);
20 WebSettings webSettings =

wv.getSettings ().setUserAgentString("My User
agent");

21 webSettings.setJavaScriptEnabled(true);
22 BridgedClass bClass = new BridgedClass ();
23 //share the bridge object to JavaScript
24 wv.addJavascriptInterface(bClass ,

"sharedJavaObject");
25 // JavaScript invoking Android via the shared

object
26 wv.loadUrl("javascript:" +

"sharedJavaObject.setValue (\" Hello World \")");
27 // Invoking JavaScript methods
28 wv.loadUrl("javascript:set()");
29 // Loading a url
30 wv.loadUrl("http ://www.dummy.com");
31
32 // JavaScript side
33 set() {
34 x = new Object ();
35 const str = new String ();
36 x.f = str.concat("x", "y");
37 v = x.f;
38 sharedJavaObject.setValue(v)
39 }

Listing 1: Android Hybrid app communication

These APIs are composed via the Android WebView class,
which allows the developer to display web pages as a part of
the app’s activity (e.g., login screen).

WebView provides two styles of communication channels
between Android and the web. In the first type, an app
can invoke a webpage/script without sharing any Android
functionality with them. In the second, more interesting two-
way communication channel, an app actively communicates
with a webpage/script by sharing Android-side functionality
to the WebView. The example in Listing 1 contains both of
these cases. Line 22 and Line 24 present the code (using
the addJavascriptInterface API) to share an Android object
to JavaScript. In our example, Line 3 to Line 12 describe
a class BridgeClass shared with JavaScript. By default, none
of the methods in a class are exposed to JavaScript. The
Android framework provides the @JavascriptInterface anno-
tation to specify the shared methods of a bridge class. For
example, BridgeClass does not share the getValue method to



JavaScript. Line 17 to Line 30 present an Android activity
code that creates a WebView. Line 19 and Line 20 pro-
vide a general configuration for creating a WebView. By
default, the execution of JavaScript is disabled in a WebView.
Developers need to manually enable JavaScript by utilizing
setJavaScriptEnabled(true) (e.g., Line 21). Once enabled, the
JavaScript can be invoked using the loadUrl method. Line 26
to Line 28 describe two ways to achieve this. Finally, loadUrl

can also be used to invoke normal URLs, e.g., Line 30.
WebView APIs: WebView provides the following APIs to

fetch URLs and execute JavaScript scripts.

• loadUrl(Url): It loads the specified Url in the WebView.
loadUrl can also execute JavaScript code. JavaScript
script strings are prepended with javascript:.

• loadUrl(Url, HttpHeaders): It has the same functionality
as loadUrl with additional HTTP headers. Developers can
specify the HTTP headers they want to bundle with the
request.

• postUrl(Url, postData): It loads the specified network Url
using the POST method along with the post data.

• WebViewClient.onLoadResource(webView, Url) It notifies
the host application that WebView webView will load the
specified Url.

WebView User Agent Settings: WebView provides an API
to set custom user-agent settings for the WebView browser.
Developers can override the user-agent settings, which can be
intercepted by the loaded URL. For example, Listing 1 sets
the user agent settings to “My User agent” (Line 20).

User-agent settings are useful for user’s security, as well as
notorious for breaking it. However, the user agent settings in
WebView are a bit different from those on browsers. Recently,
desktop and mobile browsers, such as Chrome, Mozilla, and
others, allow users to hide sensitive information to evade
fingerprinting. However, this provision is lacking in the case
of WebView browsers. Here, the control is directly in the
hands of the developer. This makes WebView browsers a
lucrative option for fingerprinting since these may inherit
privacy-sensitive data with the shared native Android app’s
functionality. Our study shows that developers have leveraged
these features to collect users’ device fingerprints.

B. Browser Fingerprinting

Browser fingerprinting is a technique to profile users to
uniquely identify them based on passive information, known
as a browser fingerprint, obtained from the browser. Browser
fingerprint uses the information collected from browsers, such
as HTTP headers (e.g., User Agent and Accept and Con-
tent Language), Flash plugins, JavaScript cookies, and many
others. Recent web advances, such as browser extensions,
canvas elements, and WebGL components are also known to be
sources of fingerprints [20], [3]. We explain three approaches
here: (1) User Agents, (2) Accept and Content-Language, and
(3) browser extensions, to aid the understanding of this paper.
Interested readers may refer to Laperdrix et al. [20] for a
detailed survey of browser fingerprinting.

The HTTP protocol is meant to be platform-independent,
and therefore, browsers rely on the information from HTTP
headers to identify the browser of an incoming request. The
information is encoded in the standard HTTP semantics (RFC
9110 [21]) called User-Agent request headers or User Agent
strings. User-Agent strings specify the system characteristics
such as browser, operating system, architecture, and many
others, and are used by web servers to identify the client infor-
mation. As of now, User-Agent strings are complex and add a
plethora of information other than the browser. Developers can
override the existing user-agent headers and inject information
into these headers. For example, developers can modify these
strings via JavaScript and add more information, such as the
timezone, screen-specific attributes (such as resolution, depth),
platform, and many others. This information is a source of
fingerprinting as shown by earlier works [20], [1].

Accept headers, specifying the file types accepted by the
browser, are another source of fingerprinting [20], [1]. They
come as a comma-separated list of content types and their
subtypes. For example, a browser can set the accept headers
to text/html, application/xhtml+xml, which indicates the
browser can accept the type text of sub-type html. Content-
Language attribute specifies the localization information of the
browsers, such as de-DE, en-US, en-IN. Content-language
is also a source of localization information for fingerprint-
ing [22].

Browser extensions are browser-based applications that
enhance the browsing experience. Although these improve
the browser experience, such as reducing ads, they are also
a source of fingerprinting information. Starov and Niki-
forakis [7] identified 14.10% of users via fingerprints obtained
from their browser extensions. They used the changes in the
DOM model introduced by the browsers to detect extensions.
A similar study from Sanchez-Rola et al. [8] showed the
possibility of extension enumeration attacks on browsers, thus
identifying 56.28% from 204 users. To this end, they measure
the timing difference between querying resources of fake and
benign extensions.

a) Large scale studies on browser fingerprinting:
Browser fingerprints can compromise users’ privacy. It was
first demonstrated in the experiment Panoptclick [1] by Peter
Eckersley from the Electronic Frontier Foundation, where he
fetched around 470,000 fingerprints, of which around 84%
were unique. His experiment shows the gravity of the problem,
i.e., browser fingerprints can uniquely determine a majority
subset of the users on the web. Following up on these exper-
iments, researchers revealed many other sources of browser
fingerprinting generation techniques to profile users and break
their privacy. We list these techniques in the related work.

The evolution of the Web from desktop to mobile browsers
has affected users’ privacy in terms of browser fingerprinting.
Earlier research [11] shows that fingerprints from mobile
browsers reveal a lot more sensitive information than from
desktop browsers. To tackle the problem of fingerprinting, web
browsers have started introducing policies to minimize browser
fingerprints. Unfortunately, these policies do not apply to the
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Figure 1: Threat Model

hybrid app’s in-built browser, leaving the control in the hands
of the developers. We study this aspect in this paper.

b) Uniqueness of a fingerprint: To compare the strength
of the information revealed by the fingerprints obtained in
our study, we compare it against a larger dataset of Cover
your tracks [23]. It shows the bits of unique information [24]
revealed by the fingerprint, which matches with the fingerprint
obtained in our database. Cover your tracks shows this infor-
mation in terms of the number of browsers having the same
fingerprint. In this paper, we refer to it as uniqueness.

III. SYSTEM DESIGN

A. Threat Model

Figure 1 details the threat model concerning fingerprinting
in hybrid Android apps. In this work, we are interested in
sensitive information release via fingerprints of hybrid apps’
browser. The source of sensitive information comes from the
native side of the Android apps. Our threat model assumes that
the Android native side is trusted as the sensitive data access
is controlled via the Android permission model. The web
elements of the hybrid app can access (selected) Android’s
sensitive sources using the WebView bridge. At the same time,
web elements may release more information via fingerprints
due to the hybrid browser’s privacy policies. Finally, a threat
may arise from the web elements’ vulnerabilities that cause
unintentional information release to an intruder.

B. Workflow

CHARLIE solves numerous technical challenges required to
identify and collect fingerprints from Android WebView. With
traditional browsers, it is feasible to attach scripts/plugins to a
web page and rely on cookies to gather information, which is,
unfortunately, not possible with hybrid apps. The hybrid app
browser is provided as a part of the Android Framework, and it
displays web pages as a part of the app’s activity. In this work,
we perform runtime instrumentation of the WebView class to
intercept the fingerprinting data. Generally, network analysis
tools such as Wireshark could also obtain parts of the required
data. However, for a large scale analysis, instrumenting the
WebView class gives us more control over the data we collect,

Instrument.js

postURLloadUrl

WebView WebViewClient

onLoadResource

Frida-Instrumentation

Inject
Frida Server

Emulator

Target App

Android Framework

Overload WebView

FingerPrints
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Figure 2: Workflow of CHARLIE

e.g., Wireshark does not associate the apps’ identifier to
the network traffic containing fingerprinting data. Besides,
instrumenting WebView enables us to capture the direct traffic
from the particular app, while Wireshark captures all traffic,
including noise from other apps and Android Framework.

Figure 2 provides an overview of CHARLIE. There are two
potential ways to instrument WebView. First, modifying the
Android framework by integrating the required code changes
directly into the Android Open Source project, and then run-
ning the apps on this custom Android OS. Second, achieving
the desired modifications with the help of dynamic instru-
mentation. In this work, we opt for the latter path; we lever-
age an existing Android dynamic instrumentation framework,
Frida [18]. Frida provides a dynamic instrumentation toolkit
to inject code into the Android Framework programmatically.
In particular, Frida supports overloading the existing methods
of the Android Framework. CHARLIE instruments the Android
framework to overload the loadUrl, and postUrl methods of
the WebView class, and onLoadResource of WebViewClient. In
particular, the instrumentation is targeted to collect three key
pieces of information; User Agent strings, custom headers, and
URLs. URLs help to identify the unencrypted traffic originated
from loadUrl. Custom headers and the User Agent help to
identify privacy leaks and unique identifiers associated with
the transmission. To navigate through various Android activ-
ities, we leverage the Android automated tester Monkey [25].
Monkey produces pseudo-random streams of user events such
as mouse movements and gestures and generates various
system-level events for automatic navigation of Android apps.
We configured Monkey with 500 pseudo-random events.

Algorithm 1 presents pseudocode for instrumenting the
loadUrl method with a single parameter and collecting the
corresponding fingerprints during the app execution. Line 1
creates an instance object WebView pointing to the Android
Framework’s WebView class. In the next line, the loadUrl
method is overloaded to extract browser fingerprints. In par-
ticular, the loadUrl method is instrumented to extracts app’s
unique identifier (package name), custom headers, the user-
agent string, and URL. Finally, the app is run via Monkey
tester on the instrumented Android runtime to collect these
fingerprints for each explored instance of the loadURL invo-



Algorithm 1: Instrument loadURL(url)
Input: APP A, Android Runtime ART, FridaServer F
Output: Instrumented ART’, Fingerprints BF

1 WebView← F .getWebViewClassInstance(ART)
2 ART’ ← WebView.loadURL.overload.implement(URL) ↪→
3 { context ← getCurrentAPPContext()
4 packageName ← context.packageName()
5 LOG(packageName, URL, header, userAgent) }
6 foreach WebView in launchMonkeyTester(A, ART’) do
7 BF ← WebView.loadURL.collectLog(URL)

cation. Similarly, other WebView APIs are instrumented, and
corresponding fingerprints are extracted at runtime.

IV. DATASET

To study the impact of browser fingerprinting on hybrid
apps, we conducted our study on a diverse set of Android apps.
In particular, we curated apps from the following datasets:
• AndroZoo Dataset We downloaded over 60,000 apps (as

of December 2022) from the AndroZoo dataset [26]. All
downloaded apps were selected to be 5 MB or greater in
size. AndroZoo contains a compilation of Android apps
from several marketplaces, including the Google Play store.
The AndroZoo dataset is updated daily with new apps from
Google Play, every three days for F-Droid, and twice a
month for the Anzhi play store. We explicitly confirmed
this with AndroZoo’s maintainers. Accumulating apps from
the AndroZoo dataset provides a wide variety of apps since
they belong to three different marketplaces. In our study,
we are interested in hybrid apps containing at least one
instance of WebView. Thus, to filter for hybrid apps, we
first decompiled the apps in the dataset and examined the
decompiled code for WebView-related method signatures.
To further validate that these apps are hybrid, we applied our
instrumentation framework to them and logged WebView-
related method calls. We ended up with 37,623 apps that
use at least one instance of WebView’s APIs. The pie chart
in Figure 3a provides the distribution of app categories.

• Google Play Store We downloaded 10,000 recent appli-
cations from the Google play store. Of these, 5,000 apps
are accumulated as the top 500 apps each from the top 10
app categories. The remaining 5,000 apps were downloaded
randomly. We applied the same strategy to filter the hybrid
apps and removed apps already present in the Androzoo
dataset, ending up with 3422 additional apps that use at least
one instance of WebView. The pie chart in Figure 3b shows
the categorization of these apps based on the categories.
Apps for Manual Analysis: Among the popular apps, we
selected ten apps for automatic as well as manual analysis.
In particular, for the manual analysis, we created multiple
(fake) accounts and observed HTTP headers like cookies,
user-agent strings, and URLs for these accounts. The manual
analysis aims to determine the information that can help
identify a user uniquely over multiple devices or platforms.
Table I lists these apps, along with the sensitive information
they expose in their user agent, cookies, and custom headers.
Figure 3c and 3d provide the distribution of apps based on

their size and release date. Apps in our dataset range from

5 MB to 600 MB in size, with an average size of 25.22
MB. Besides, these apps were released between Feb 2022
and Dec 2022. All of these applications were subsequently
instrumented as described in Section III to collect the user
agent strings, custom headers, and URLs. We further created
scripts to automate the data collection process: All of our
scripts are publicly available to researchers for replication
purposes.

V. EVALUATION

Multiple studies have been proposed for browser fingerprint-
ing [11], [1], [20], [2] and Android hybrid app analysis [16],
[14], [15], [17]. The most relevant recent work [11] per-
formed a preliminary investigation on fingerprinting of mobile
browsers. However, their work focused on full-fledged mobile
browsers. In contrast, we aim to perform a large-scale study of
fingerprints generated by hybrid Android apps. In particular,
we are interested in information leakage, user tracking, and
security implications arising from the bridge communication
capabilities of hybrid apps. The bridge communication pro-
vides access from (potentially) untrusted web components of
a hybrid app to the trusted native app’s data and functionality.
In this work, we explore how the web component of a hybrid
app exploits these capabilities to expose information via finger-
printing. Besides, we identify the differences in fingerprinting
between the stand-alone and the hybrid apps’ browser. In
summary, we find that hybrid apps reveal more information
about the user than traditional browsers. Our experiments were
designed to answer the following research questions:

RQ1 Does the hybrid browser release more information than
other browsers?

RQ2 Is the hybrid browser susceptible to passive fingerprint-
ing?

RQ3 What is the impact of the combination of Cookies and
user-agents in information release?

RQ4 Can the hybrid browser’s fingerprint infringe on the native
app’s security policies?

RQ5 What is the impact of unencrypted communication on the
hybrid browser?

Our experiments were performed on a personal laptop with
16 GB RAM and a fourth-gen Intel Core i7-4500U processor
running Windows 10.

a) RQ1: Privacy leakage unique to hybrid apps’
browser.: Fingerprints in WebView are a good source of
(potentially) privacy-sensitive information. For example, the
hybrid app browser’s fingerprint contains sensitive informa-
tion such as the phone model and build number. The latter
is sensitive information that can be leveraged to determine
vulnerable devices and craft operating-system-specific attacks
as observed by security analysts [27] and acknowledged by
Google [28]. The desktop Chrome browser removed the build
number in 2018 whereas the hybrid apps’ browser includes
this information in the user agent string up to this date.

To further improve user privacy, Chrome contains a privacy
sandbox since version 93 (released on August 31, 2021). It
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allows the user to manually limit1 leaking of sensitive informa-
tion to protect against passive fingerprinting. However, no such
configuration can be activated in hybrid apps’ in-built browser.
Table II shows the uniqueness of the fingerprints obtained on
hybrid apps’ in-built browser, the standalone Chrome browser,
and the Chrome browser with sandboxing. The uniqueness
brought by the privacy sandbox is 259 times lower than the
unmasked fingerprint: The higher the uniqueness number, the
worse it is for users’ privacy.

To obtain the uniqueness of a browser fingerprint, we
leverage Cover Your TRACKS [23], a research project to
understand the uniqueness of browser fingerprints. It provides
a uniqueness score to a fingerprint based on a large fingerprint
database. We observed that fingerprints including the build
number are highly unique; the uniqueness decreases signifi-
cantly when removing the build number, and again drastically
when limiting the phone model information.

Finding 1: Hybrid apps’ built-in browser permits more
sensitive information leakage than the stand-alone browser.
All hybrid apps in our dataset expose the build number and
phone model in their fingerprints. This permissiveness stems
from the inability to configure system-wide privacy policies.

1Via chrome://flags/#reduce-user-agent

RQ2: Information leak via passive fingerprinting.: Like
traditional browsers, Android allows WebView to transmit
a user-agent HTTP header to the server, which can derive
information from it. It is the app developers’ responsibility to
control the information they want to share with the server. As
is, the web components (WebView) of hybrid apps indirectly
inherit the same level of permissions as the shared components
of the native side of the apps. Thus, by using the shared
APIs, they potentially have access to sensitive device/user-
specific information. During our manual analysis of the most
popular apps from the Google play store, we observed an
interesting mechanism to profile users based on the HTTP
headers in the social media apps (with chat functionality) that
use WebView to open in-app URLs. We exemplify our attack
on the well-known social media app Instagram. Instagram’s
Android app leverages WebView to open an in-app URL/link,
i.e., a link shared in a chat. We crafted a scenario where a
curious (or malicious) user, Bob, wants to get some personal
information such as the phone model, language, or ethnicity
of a user Alice. Bob owns a server that can create account-
specific links (e.g., server.com/Alice) and sends this link to
Alice, and once Alice clicks on this link, it is displayed in
the built-in WebView browser. Figure 4 shows the fingerprint
and the sensitive information shared with Bob’s server; Bob
is able to obtain Alice’s personal information, such as phone



Table I: Manually Analyzed Apps

App Name Version Category Cookie User agent Custom headers

Instagram 229.0.0.17.118 Social no
Phone model, build number,
localization info, SDK,
Android version, processor

no

Facebook 359.0.0.30.118 Social no Phone model, build number no
Alibaba 7.48.1 Shopping yes Phone model, build number unique user ID
Twitter 9.31.1 Social no Phone model, build number no
LinkedIn 4.1.629.1 Social no Phone model, build number no
Uber 4.361.10001 Maps and Navigation no Phone model, build number no

QuuBe - Wholesale 6.5.1 Shopping yes Phone model, build number,
UUID in the user agent unique user ID

Flipboard 4.2.97 News & Magazines no Phone model, build number no
Youtube 17.08.32 Video Players & Editors no Phone model, build number no
DW Learn German 1.0.1 Education no Phone model, build number no

Table II: Fingerprints from Various Browsers

Platform Fingerprint Uniqueness (1/X)
Hybrid apps’ Browser {Mozilla/5.0 (Linux; Android 9; SM-A505FN Build/PPR1.180610.011; wv)

AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0 Chrome/99.0.4844.88
Mobile Safari/537.36}

X= 218256

Chrome Browser {Mozilla/5.0 (Linux; Android 9; SM-A505FN) AppleWebKit/537.36 (KHTML,
like Gecko) Chrome/98.0.4758.87 Mobile Safari/537.36}

X = 218112

Chrome Browser with sandboxing {Mozilla/5.0 (Linux; Android 10; K) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/93.0.0.0 Mobile Safari/537.36}

X=838.98

model and language preferences.
As discussed in case study 1, the Instagram app, by default,

sends the phone’s model and build number, already providing
more uniquely identifiable information than the stand-alone
Chrome browser. On top of that, it also reveals the Android
version (both OS and SDK), phone resolution, processor name,
and localization information. Localization information is very
sensitive for profiling users. We observed that the uniqueness
of this information is very high (217923), which is detrimental
to users’ privacy.

This fine-grained information in the user-agent header ren-
ders the app vulnerable to passive fingerprinting, where an
attacker can infer these user-agent headers by simply observing
the traffic coming from a malicious URL shared through
the chat. To mitigate the problem of passive fingerprinting,
RFC9110 [21, ch. 10.1.5] disallows “advertising or other
nonessential information within the product identifier”. Insta-
gram adds personally identifiable information to the contrary.
In contrast to the stand-alone browser where the user can
choose to hide this information, the user has no control over
which information is shared once certain permissions are given
to the Instagram app.

Finding 2: Hybrid apps are susceptible to passive finger-
printing and often violate standard privacy policies. Famous
apps like Instagram provide less to no control to their users
over the amount of sensitive information released via web
components.

b) RQ3: Profiling Users via a combination of cookies
and user-agent. : In the previous case studies, we demon-

strated how users could be profiled based on user-agent strings.
The situation becomes more severe when this information is
combined with other mediums such as cookies; the combined
information helps obtain a fine-grained profile of the user. For
example, in the Alibaba app, the user’s account ID (unique
over multiple devices) is added to the cookies; thus, one
can intercept the user ID and the phone model information
obtained from the user-agent string to profile users’ phone
buying behavior. Note that the user’s account ID stays the
same over various devices/browsers, i.e., users can be uniquely
identified over different service providers. Besides, the server
can concretely infer sensitive information on the user, e.g.,
how many devices a user owns, how frequently users change
their phone, and what the financial situation of a user is.

User profiling is also possible through HTTP ACCEPT-
language headers. ACCEPT-language headers are used to
determine the language preferences of the client. Generally,
these headers are derived from the language preference of
the user. For example, a user located in Switzerland and
speaking German would have the accept language CH-de.
Unfortunately, a user can be profiled based on her language
preferences, e.g., identifying the user’s origin, ethnicity, or
nationality. Worse, if the user speaks more languages, with
the combination of other fingerprintable information, the user
can be uniquely identified. For example, a user speaking a
combination of Russian and Turkmen languages could be
profiled as Turkmenistan origin. However, users can hide this
information on regular browsers through their settings or,
better, use a privacy-compliant browser. Unfortunately, this is
not possible for the hybrid browser as users cannot control the



Mozilla/5.0 (Linux; Android 9; SM-A505FN Build/PPR1.180610.011; wv)
AppleWebKit/537.36(KHTML, like Gecko) Version/4.0 Chrome/99.0.4844.88
Mobile Safari/537.36 Instagram 229.0.0.17.118 Android (28/9; 420dpi;
1080x2131; samsung; SM-A505FN; a50; exynos9610;en_DE; 360889116)

(a) Fingerprints

Instagram Version (Instagram 229.0.0.17.118, 360889116), Platform (Android)
Android SDK (28) and version (9), Phone model (samsung; SM-A505FN;),
Proccessor name (exynos9610) DPI and Resolution (420dpi; 1080x2131),
Locale (en_DE)

(b) Identifying Information

Figure 4: Fingerprint from Instagram

Table III: Apps including unique IDs into user-agent string
Package Name App Name Category
com.oddm.adpick Adpick Office
net.giosis.shopping.id Qoo10 Indonesia Shopping
net.giosis.shopping.cn.nonepush Qoo10 APK 3.2.7 Shopping
Net.giosis.shopping.sg Qoo10 - Online Shopping 6.5.1 Shopping
xyz.quube.mobile QuuBe - Wholesale by Qoo10 Shopping
xyz.quube.shopping.tablet QuuBe for Tablet Shopping
mobile.qoo10.qpostpro Qpost Pro 1.4.1 Shopping
mobile.qoo10.qstl20 Style Club 6.4.0 Shopping
com.alibaba.intl.android.apps.poseidon Alibaba Shopping
Com.accelainc.ihou.fr.droid Illegal Romance 1.0.2 Adventure

settings of this browser.

Furthermore, we observed that various applications attach
unique device IDs to the user-agent string, resulting in the
direct identification of a user. To observe this behavior,
we logged into the apps with multiple user accounts and
observed the differences in the fingerprints. This manual
analysis confirms this misconduct [21, ch. 10.1.5] in at least
ten apps in our dataset. Table III presents the list of these
apps alongside their categories. Apps with a similar name,
e.g., Qoo10 Indonesia and Qoo10 APK 3.2.7, are from the
same manufacturer but belong to different countries and have
different privacy policies. Owing to the sheer volume of the
dataset, it was not feasible to create multiple accounts for all
the apps and relate fingerprints for this unique information.
Table IV shows a sample of the fingerprints obtained from
the devices containing unique device IDs. As is, the unique
IDs are attached to the devices; they remain unchanged after
even reinstalling the apps. Along with the unique device
ID, these devices contain fine-grained information about the
device attributes, such as build number, phone model, and
Android version. Thus, one can directly relate a device to
its attributes, and also build a temporal profile of the par-
ticular device, in case the device is used by another user.
Finding 3: The combination of cookies and user agents
links sensitive device and user-specific information. This
information can be exploited to profile a user uniquely,
such as identifying the origin and estimating the personal
financial status. Besides, a few apps in our dataset attach
their users’ account IDs (unique for a user) to the cookies
making their users uniquely identified over different devices.

JavaScript:if(window.Application)
{

Application.setDeviceUid(""APA91bG956w4WPzLIh
DCHdcnIdbigwApzJzX -WFCkrKRcpJMr9Xw0kbAAxjBYj -
f6UnVrfeMWRhuPlQIiv8np8733GgHzHm6QHLMeK1
-InIkhWvxq9yjGb_i2a5WdxIQmaAl -QP3aHHIqK9XTGJiiPpJo
_dXqkVNzQ"");

}

Listing 2: Setting device IDs through JavaScript

c) RQ4: JavaScript modifying Android objects.: As a
part of our instrumentation framework, we instrument the
loadUrl method to extract the originating URLs. On top of
loading URLs loadUrl also provides functionality to load/ex-
ecute a JavaScript code snippet directly. We also intercepted
many cases where JavaScript modifies Java objects using
bridge objects. A recent study [16] exposed instances of
potentially untrusted JavaScript code interfering with An-
droid objects. However, in several cases, the aim of such
interference was unknown in that study. In this work, we
identify a number of patterns where JavaScript transmits
unique IDs to native Android objects. These unique IDs
can be used as fingerprints for devices. For example, an
app com.a2stacks.apps.app57191abb7ab09 sets the user ID
of the user as shown in listing 2, violating multiple secu-
rity policies. First, the (potentially) unsafe web component
violates the integrity of the native app by modifying its
object, i.e., writing the device UID into a field. Second, the
app may violate the Android privacy policies by assigning a
unique device identifier without having asked for permissions.
Finding 4: (Potentially) Unsafe web components infringe
the integrity of a native app’s object. Hybrid app web
components (JavaScript) assign unique identifiers to the
device for (potential) fingerprinting purposes via the Android
bridge communication.

d) RQ5: Unencrypted communication.: During our
analysis of extracted URLs, we find various instances where
unencrypted protocols such as HTTP are used to communicate
secret information such as device IDs, IP addresses, Google



Table IV: Fingerprint showing unique ID
App Category Fingerprint
com.oddm.adpick Office Mozilla/5.0 (Linux; Android 10; Android SDK built for x86 Build/QSR1.210802.001;

wv)AppleWebKit/537.36 (KHTML, like Gecko)Version/4.0 Chrome/74.0.3729.185

Mobile Safari/537.36 AdpickEncrypted:GDPViCyiXnbcQgWnvAmIBusjAV43FvgPeawc

/Xc5ayQW0rBy/oA8BUz4Vdmy9ITgwRQDnaI7BmZB#nXG5+MzNecK3HyqXv7P5/2u9yqMmkwrA/leTfsNeUZbmjvz

j9D9m ECLyuBwl3lA8Sz 2dt4Ue1H1tT#n4mWgFssSh2n/eR1qpgnGRhc1cB2jqXtWuTW/cNQC#n

net.giosis.shopping.id Shopping Mozilla/5.0 (Linux; Android 11; Android SDK built for x86 Build/RSR1.210210.001.A1;

wv)AppleWebKit/537.36 (KHTML, like Gecko)Version/4.0 Chrome/83.0.4103.106 Mobile

Safari/537.36 Android_Gmarket Qoo10 ID_3.6.2_133(GMKTV2_ZlRnG1XAIzgwoC3OBe0hNjV4PfmyaC5RAI

BqY+mkcipUGsSIiB19AyfIHQY1msEafG/xGz9RIS4=;AndroidSDK built for x86;11;en_US;2000010476)

net.giosis.shopping. cn.nonepush Shopping Mozilla/5.0 (Linux; Android 10; Android SDK built for x86 Build/QSR1.210802.001;

wv)AppleWebKit/537.36 (KHTML, like Gecko)Version/4.0 Chrome/74.0.3729.185 Mobile

Safari/537.36 Android_Gmarket Qoo10 CN NOPUSH_3.6.6_137(GMKTV2_/E/eowDAPJdLOH3or4b6kUZaqi

Q9445kf50bcLzkkQeoFvJmnsEzdFnnyGmoyagfCYHYKlwCWP4=;AndroidSDK built for

x86;10;en_US;2000000134)

net.giosis.shopping.sg Shopping Mozilla/5.0 (Linux; Android 10; Android SDK built for x86 Build/QSR1.210802.001;

wv)AppleWebKit/537.36 (KHTML, like Gecko)Version/4.0 Chrome/74.0.3729.185 Mobile

Safari/537.36 Android_Gmarket Qoo10 SG_6.5.1_269(GMKTV2_yQ+4mthiJO62KzrgMNh9rwIUgQVt5Aax6j

ISAXY3h++KFBJ4DO5 /YZdeiP3jYmD+hnf246qDDdk=;Android SDK built for

x86;10;en_US;200007873;US;)

com.accelainc.ihou.fr. droid Adventure 2NSsaFdT 60D1F74326F469CB__5DC12396C15AB57696B4A 69152169D 1.0.1 & Mozilla/5.0 (Linux;

Android 10; Android SDK built for x86 Build/QSR1.210802.001; wv)AppleWebKit/537.36

(KHTML, like Gecko)Version/4.0 Chrome/74.0.3729.185 Mobile Safari/537.36
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Figure 5: Unencrypted URLs by App Categories

ads user identifiers, and many other sensitive data. This is
a severe problem, and unfortunately, 3922 applications from
our dataset contain this flaw. Related work [16] has shown
that the use of unencrypted communication is susceptible
to simple man-in-middle attacks: An attacker can alter the
server’s response to an attacker-controlled web page without
the user noticing any difference. Besides, the attacker learns
the user’s sensitive information by just observing the traffic;
281 apps share Google ads IDs, and 132 out of them also
add IP addresses to the URLs. Interestingly, 214 of these 281
apps use URLs from the domain http://splash.appsgeyser.com
domain, 28 from http://splash.appioapp.com, and 39 from
http://ads.appioapp.com. Notably, all of these URLs belong to
platforms (AppsGeyser and Appio) for creating Android apps,
thus many other apps (not in our dataset) may be susceptible
to unencrypted communication. Table V shows a list of ten
apps that load at least one instance of an unencrypted URL.
Figure 5 provides the distribution of apps using unencrypted
URLs based on categories.

Table V: Ten Apps with Unencrypted URLs
Package Name App Name Hash
com.wWelcometoPurnia Welcome to Purnia 004BDEAF41
com.wPBALogistics PBALogistics APK 0094D388AB
com.wKPUKabKepulauanSelayar KPU Kab Kepulauan Selayar 005F8F4E97
com.wsmile2 Smile APK 1.1 00F784BF5B
com.wAnEssayonManmoralessaysandsatires An Essay on Man APK 0183B4DF5C
com.cultplaces Cult Places 0665508043 l
com.wTrendyBotswana Trendy Botswana 067999FD77
com.wProfDrMustafaKaratasSoruCevap Mustafa Karataş ile Soru Cevap 06F06AFCB9
com.wTanksDecades Tanks Decades 06F781FF93
com.wRapKlayBBJ Rap Klay BB.J 0711A4A1AE

Finding 5: 9.6% of the apps in our dataset leak sensitive
information via unencrypted communication protocols like
HTTP. These URLs contain sensitive data such as device IDs,
IP addresses, ad identifiers, locale information, and other
sensitive data.

VI. LIMITATIONS

CHARLIE is a dynamic instrumentation tool and relies on
the instrumentation framework Frida to instrument the Android
Framework and record the fingerprinting data. It inherits all
the limitations of Frida, e.g., it is known to crash for the older
version of Android apps2. Besides, to navigate through various
app activities, i.e., for coverage, CHARLIE relies on the auto-
mated Android tester Monkey [25], and its coverage is limited
to the activities visited by Monkey. Thus, CHARLIE misses
Android components that Monkey does not explore.

VII. THREATS TO VALIDITY

Internal Validity: CHARLIE relies on existing dynamic
analysis tools, and there are many automated testing tools.
In particular, CHARLIE uses the Monkey tester, which might
result in selection bias. We choose the Monkey tester as
the research community widely uses it, and official Android
document supports it. Another threat is related to the selection
of our dataset, i.e., whether the chosen apps favor CHARLIE.

2https://frida.re/docs/android/



We mitigate this threat by selecting a large set of apps from
the widely used AndroZoo dataset. Besides, we choose the
most popular apps from the Google play store. One final threat
is validating the results for the manually analyzed apps. To
mitigate this threat, at least two authors of the paper cross-
validated the analysis results.

External Validity: Threats to external validity relate to
the generalization of our results, i.e., our results may not hold
beyond the apps in our dataset. To mitigate this, we performed
our study on a large set of apps from the widely accepted
AndroZoo dataset and the most popular apps from the Google
play store. Besides, the apps in our dataset belong to various
categories, and the distribution over these categories is even.

VIII. LESSONS LEARNED

This work studies the application of browser fingerprinting
in the Android WebView. Our study finds that the hybrid
browser’s fingerprints release more sensitive information than
other browsers. In the followings, we summarize the lessons
from our research:
• Fingerprinting is widely used with Android WebViews. The

hybrid browser permits finer fingerprinting compared to
other browsers. The permissiveness stems from the inability
to configure system-wide privacy policies.

• The central problem lies with the non-user-centric design
of the hybrid browser, i.e., the control of the WebView
browser is with the developer, not the user. Policies to mask
device-specific information for WebView browsers, like in
full-fledged browsers, can help make it privacy-compliant.

• Many apps use unencrypted communication protocols via
WebView. The majority of these URLs originate from unsafe
third-party libraries. Developers should be cautious using
such URLs with WebView.

IX. RELATED WORK

Fingerprinting in browsers has been studied for a little more
than a decade. To the best of our knowledge, three large-
scale studies have been conducted on browser fingerprints.
The first study [1] showed how user-agents, list of plugins, and
fonts available on a system can be used to fingerprint mobile
devices. Their results showed that 83.6% of the user-agents
strings are unique, hence, susceptible to fingerprinting. They
coined the term browser fingerprinting, referring to the use of
system information obtained from web clients as fingerprints.
AmIUnqiue took it a step further and identified new attributes
for fingerprinting such as HTML canvas elements. It also
identified the most common attributes in fingerprinting for
mobile devices. Oliver’s thesis [11] showed that fingerprinting
is “quite-effective” on mobile devices based on a preliminary
investigation in susceptibility of mobile browsers towards
fingerprinting. Our work is placed in the context of browsers
embedded in hybrid apps. Hybrid-app browsers are customized
by the developer and, in contrast to standalone browsers, users
have little to no influence on its security and privacy policies.
Therefore, these browsers are a fertile ground for profiling
users through fingerprinting.

In a contrasting study, HidingInTheCrowd [2] studied the
evolution of browser fingerprints over time. Their study shows
that the number of unique fingerprints has reduced from the
previous studies — more in the case of mobile browsers
than desktop browsers. The fingerprints obtained from mobile
browsers, in their study, present attributes having unique values
and primarily use user-agent settings and HTML canvas ele-
ments. It conforms to Oliver’s study [11], where it shows that a
majority of mobile fingerprints are unique due to the presence
of an unique identifier. This observervation also conforms with
our study, where we have also obtained fingerprints which are
also unique to users and devices.

Apart from these, earlier studies have also focussed on the
sources of fingerprints. Acar et al.’s study [3] showed the use
of HTML canvas elements in fingerprinting. Sources of fin-
gerprinting also include WebGL [4], [5], Web Audio API [6],
browser extensions [7], [8], [9], and CSS querying [29], among
many others. Therefore, browser fingerprinting techniques
have diversified their sources keeping in pace with evolution
of the web. In comparison, we have confined our study to
features in HTTP-headers in hybrid apps. Hybrid apps do
not support browser extensions, and therefore, we have not
considered these in our study. Also, we did not find other
sources, such as canvas elements, WebGL resources in our
study and choose to ignore these features.

The paper also overlaps with studies on privacy leakage
in hybrid apps. Tiwari et al. [16] profiled privacy informa-
tion leaked through the bridge interface. Rizzo et al. [14]
studied the use of code injection attacks in WebView. Lee
et al. [15] discovered the vulnerability of AdSDKs leaking
sensitive information via loadUrl. Mutchler [17] conduced
a large-scale study on the Android app ecosystem to detect
vulnerabilities in hybrid apps. Their findings suggest that
hybrid apps have at least one security vulnerability in the
Android app ecosystem. Zhang [30] performed a large-scale
study of Web resource manipulation in both Android and iOS
WebViews. They discovered 21 apps with malicious intents
such as collecting user credentials and impersonating legiti-
mate parties. In comparison to all these works, we analyze the
fingerprints obtained from the hybrid-browsers, and manually
analyze the privacy-leakage thereof.

X. CONCLUSION

In this paper, we studied the fingerprints obtained in hybrid
apps. To this end, we developed an instrumentation-based tool
to record the user-agent strings and HTTP headers used in
the webpage of the hybrid apps. Our study shows that hybrid
apps are as susceptible to fingerprints as websites accessed
on mobile browsers. However, the absence of mechanisms to
enforce privacy policies makes it harder, if not impossible, for
users to protect their privacy. Therefore, the recent advances in
protecting privacy via fingerprinting do not translate into the
realm of hybrid apps as the configuration remains in the hands
of developers. Our study highlights the need for techniques to
enforce privacy policies in hybrid apps.
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[2] A. Gómez-Boix, P. Laperdrix, and B. Baudry, “Hiding in the crowd: An
analysis of the effectiveness of browser fingerprinting at large scale,”
in Proceedings of the 2018 World Wide Web Conference, ser. WWW
’18. Republic and Canton of Geneva, CHE: International World Wide
Web Conferences Steering Committee, 2018, pp. 309–318. [Online].
Available: https://doi.org/10.1145/3178876.3186097

[3] G. Acar, C. Eubank, S. Englehardt, M. Juarez, A. Narayanan, and
C. Diaz, “The web never forgets: Persistent tracking mechanisms in
the wild,” in Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’14. New York,
NY, USA: Association for Computing Machinery, 2014, pp. 674–689.
[Online]. Available: https://doi.org/10.1145/2660267.2660347

[4] Y. Cao, S. Li, and E. Wijmans, “(cross-)browser fingerprinting via os
and hardware level features,” in NDSS, 2017.

[5] K. Mowery and H. Shacham, “Pixel perfect : Fingerprinting canvas in
html 5,” 2012.

[6] S. Englehardt and A. Narayanan, “Online tracking: A 1-million-site
measurement and analysis,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’16.
New York, NY, USA: Association for Computing Machinery, 2016,
pp. 1388–1401. [Online]. Available: https://doi.org/10.1145/2976749.
2978313

[7] O. Starov and N. Nikiforakis, “Xhound: Quantifying the fingerprintabil-
ity of browser extensions,” in 2017 IEEE Symposium on Security and
Privacy (SP), 2017, pp. 941–956.

[8] I. Sanchez-Rola, I. Santos, and D. Balzarotti, “Extension
breakdown: Security analysis of browsers extension resources
control policies,” in 26th USENIX Security Symposium (USENIX
Security 17). Vancouver, BC: USENIX Association, Aug. 2017,
pp. 679–694. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/sanchez-rola

[9] G. G. Gulyas, D. F. Some, N. Bielova, and C. Castelluccia, “To
extend or not to extend: On the uniqueness of browser extensions
and web logins,” in Proceedings of the 2018 Workshop on Privacy
in the Electronic Society, ser. WPES’18. New York, NY, USA:
Association for Computing Machinery, 2018, pp. 14–27. [Online].
Available: https://doi.org/10.1145/3267323.3268959

[10] P. Gupta, T. K. Wee, N. Ramasubbu, D. Lo, D. Gao, and R. K.
Balan, “Human: Creating memorable fingerprints of mobile users,”
in 2012 IEEE International Conference on Pervasive Computing and
Communications Workshops, 2012, pp. 479–482.

[11] J. Oliver, “Fingerprinting the mobile web,” Ph.D. dissertation, Master
Thesis. London, UK: Imperial College London, 2018.

[12] “Webview,” https://developer.android.com/reference/android/webkit/
WebView/, Google, 2021.

[13] Google, “Chromium webview browser,” https://developer.chrome.com/
docs/multidevice/webview/, 2022.

[14] C. Rizzo, L. Cavallaro, and J. Kinder, “Babelview: Evaluating the
impact of code injection attacks in mobile webviews,” in International
Symposium on Research in Attacks, Intrusions, and Defenses. Springer,
2018, pp. 25–46.

[15] S. Lee and S. Ryu, Adlib: Analyzer for Mobile Ad Platform Libraries.
New York, NY, USA: Association for Computing Machinery, 2019, pp.
262–272. [Online]. Available: https://doi.org/10.1145/3293882.3330562

[16] A. Tiwari, J. Prakash, S. Groß, and C. Hammer, “A large scale
analysis of android — web hybridization,” Journal of Systems
and Software, vol. 170, p. 110775, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0164121220301898
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