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Abstract—Many Android applications embed webpages via
WebView components and execute JavaScript code within An-
droid. Hybrid applications leverage dedicated APIs to load
a resource and render it in WebView. Furthermore, Android
objects can be shared with the JavaScript world. However,
bridging the interfaces of the Android and JavaScript world
might also incur severe security threats: Potentially untrusted
webpages and their JavaScript might interfere with the Android
environment and its access to native features.

No general analysis is currently available to assess the implica-
tions of such hybrid apps bridging the two worlds. To understand
the semantics and effects of hybrid apps, we perform a large-scale
study on the usage of the hybridization APIs in the wild. We
analyze and categorize the parameters to hybridization APIs for
7,500 randomly selected applications from the Google Playstore.
Our results advance the general understanding of hybrid applica-
tions, as well as implications for potential program analyses, and
the current security situation: We discover 6,375 flows of sensitive
data from Android to JavaScript, out of which 82% could flow to
potentially untrustworthy code. Our analysis identified 365 web
pages embedding vulnerabilities and we exemplarily exploit them.
Additionally, we discover 653 applications in which potentially
untrusted Javascript code may interfere with (trusted) Android
objects.

Index Terms—Android Hybrid Apps, Static Analysis, Informa-
tion Flow Control

I. INTRODUCTION

The usage of mobile devices is rapidly growing with Android
being the most prevalent mobile operating system (global
market share of 72.23% as of November 2018 [1]]). Various
reports [2], [3[] reveal that the mobile application (app) usage is
growing by 6% year-over-year and users are preferring mobile
apps over desktop apps.

Considering these statistics, industry prioritizes mobile app
development [4]. However, apps need to be developed for
various platforms, such as Android and iOS, resulting in
increased production time and cost. Traditional approaches
require creation of a native application for each platform or of
a universal web app. The former approach incurs redundant
programming efforts, whereas, the latter suffers from the
inability to access platform-specific information.

Hybrid mobile apps combine native components with web
components into a single mobile application. Intuitively, hybrid
apps are native applications combined with web technologies
such as HTML, Javascript and CSS. On Android, a WebView [3]
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component, a chromeless browser [|6] capable of displaying
webpages, embeds the web applications into a view of the
Android app. App Trends’ developer survey [7|] shows the
increasing prevalence of hybrid applications. In the previous
two years (2015-17), app development with native tools
decreased significantly (by almost 7x), whereas the number of
hybrid apps was growing in share of overall app development.
By the end of 2019, 32.7% of the surveyed developers expect
to completely abandon native development in favor of hybrid.
Due to the fact that hybrid apps combine native and web
technologies in a single app, the attack surface for malicious
activities increases significantly, as potentially untrusted code
loaded at runtime, can interfere with the trusted Android
environment. In our study with 7,500 random applications
from the Google Play Store, we find that 68% of these apps
use at least one instance of WebView and 87.9% of these
install an active communication channel between Android and
JavaScript. This includes exchange of various pieces of sensitive
information, such as the user’s location. To assess the impact on
user privacy a standalone analysis of the Android or Javascript
side is thus clearly insufficient. However, very limited work
towards linking the assessment of both worlds can be found
in the literature. Initial approaches either focus on type errors
during hybrid communication [8] and/or only consider a very
specific vulnerability arising of hybridization [9]—[15].
Hybrid communication leverages APIs like the loadUrl or
evaluteJavascript methods, which, from inside an Android
application, can either load a webpage into the WebView or
execute Javascript code directly. To improve comprehension of
hybrid communication we propose LUDroid, a framework sup-
porting our semi-automatic analysis of hybrid communication
on Android. We extract the information flows from Android
to hybridization APIs and thus to the JavaScript engine to be
executed in the displayed web page (if any), and categorize
these flows into benign and transmitting sensitive data. We
discover 6,375 sensitive flows from Android to Javascript.
The major parameter passed to loadUrl is the URL to be
loaded. We analyze the syntax and semantics of each URL
and provide a detailed categorization. As a byproduct, we find
several vulnerabilities concerning the usage of these URLs.
We successfully exploit some of these to demonstrate the
threats. Alternatively, loadUrl and evaluteJavascript accept raw



Javascript code as parameter. We encountered code that loads
additional JavaScript libraries into WebView. Unexpectedly, we
also discovered 653 applications (with potentially untrusted
Javascript code) transmitting data back to the Android bridge ob-
ject. Therefore these apps implement two-way communication
that may jeopardize the integrity of the Android environment,
particularly as most external JavaScript is loaded without https
and is thus prone to man-in-the-middle attacks. We found that
state of the WebView is saved to Android before destruction
of that component, transmission of identifying information
used for advertisement or monetization purposes, as well as
obfuscated code to preclude analysis of the semantics. We
discuss the impact of our findings on potential program analyses
that are to automatically identify issues of hybrid apps while
taking hybrid communication concisely into account.

Technically we provide the following contribution:

o Information Flow Analysis We thoroughly investigate
7,500 real-world Android apps. We provide statistics on
the information flows between Android and Javascript and
identify leakage of sensitive information to the WebView.

o URL Analysis We perform an extensive analysis for the
URLs used with loadURL, extracting various features. As
a byproduct we identify applications that are vulnerable
due to unencrypted transport protocols and exemplify the
simplicity of a phishing attack.

o Javascript analysis We inspect the Javascript code passed
to the hybridization APIs and identify a set of 73 distinct
code snippets, most of which originating from third-part
libraries. We extract relevant features and highlight their
implications on program analysis of hybrid apps.

II. BACKGROUND
A. Hybrid applications

A general disadvantage of native applications is that they
are bound to a specific platform. For instance an Android
application is bound to the Android platform and cannot easily
be transformed into an iOS application. A developer wanting
to support multiple platforms needs to implement a native
application for each of these platforms separately, multiplying
the implementation effort. Alternatively web applications
execute in an arbitrary web browser and are therefore platform
independent. However, they are restricted by a browser sandbox
with very limited access to the native APIs of the mobile device.
Hybrid applications have been proposed as a remedy, as they
take full advantage of both approaches. They make extensive
use of web requests, e.g., to display user interfaces. While
having access to all native API methods granted by the Android
permission system, development effort is reduced, as the user
interface and its controllers can be retrieved via web requests
and therefore do not need to be re-implemented.

B. WebView and loadURL

Hybrid applications on Android leverage WebViews. Web-
Views are user interface components that display webpages
(without any browser bars), and thus provide a means to
implement user interfaces as web pages instead of natively.

The WebView class provides a loadURL method, which loads
a webpage or executes raw Javascript. This method comes
in two variants: loadUrl(String url) and loadUrl(String url,
Map<String,String> additionalHttpHeaders). While the first
variant only takes a URL as argument, the second variant can
additionally be passed HTTP headers for the request. Similar to
a browser’s location bar, one of the following parameters can
be passed to loadUrl: (1) a remote URL leveraging protocols
such as HTTP(S), (2) a local URL specified with protocol
file, or (3) Javascript code prepended by the string javascript:.
WebView leverages the appropriate renderer for each URL
type automatically. Finally, a dedicated API evaluateJavascript
executes JavaScript code directly.

III. MOTIVATING EXAMPLE

In this section we will describe a simple hybrid Android
example program (Listing [T] and 2) together with the commu-
nication between Android and the WebView component. We
will then motivate the rationale behind our large-scale study to
understand various factors concerning the usage of WebViews
in realistic apps.

In Listing [T} a WebView object myWebView is retrieved from
the Activity’s UI via an identifier (line[2). By default execution
of JavaScript in a WebView object is disabled but can be enabled
by overriding the WebView’s default settings (line [3). WebView
provides the means to create a Java interface object that is
shared with the WebView and can be accessed via JavaScript.
Thus, the Android app’s capabilities can be bridged to the Web
component via bridge communication to, e.g., provide access
to various sensors’ data. In our example, an object of the class
Leaker (see Listing [2) is shared (Listing [I] line [7) with the
WebView object myWebView such that every webpage loaded
into myWebView can use this object via the global variable
”Android” (i.e. ”Android” becomes a persistent property of the
DOM’s global object). Finally, the method loadUrl can be used
in two ways: (1) to invoke JavaScript code directly (prepending
a javascript: tag to the passed code) from Android, and (2)
to load a custom URL (line [I0) (which again may execute
Javascript code specified in the web page).

Some previous work [8] take a first step into analyzing
the data flows from Android to JavaScript but it is far from
sound and mostly concentrates on potential type errors when
passing data between the two worlds. To better understand
which data flows are to be considered when analyzing an app
consisting of a combination of Android and JavaScript code a
thorough understanding of the methods addJavascriptinterface
and loadUrl is required. In particular we are interested in the
uses and potential abuses of this interface in the wild and their
implications on the design of a program analysis for hybrid
apps.

Consider line [9]in Listing [I] which reveals that the loadUrl
method is invoking the show7Toast method defined in the
Leaker class (Listing 2] line [3). This Java method retrieves the
Android device’s unique ID and returns it to the JavaScript
code. Similar Javascript code could also be invoked in the
loaded webpage (Listing [T} line where it might be leaked



Listing 1: MainActivity.java

1 protected void onCreate(Bundle savesinstanceState) {

> WebView myWebView = (WebView)
findViewByld(R.id.webview);

s WebSettings webSettings = myWebView.getSettings();

4+ /[ enable JavaScript on WebView

s webSettings.setJavaScriptEnabled(true);

s [+ add interface object of type Leaker to the WebView’s
DOM as a property named "Android” of the global object
*/

7 myWebView.addJavascriptinterface(new Leaker(this),
"Android”);

s //case 1: invoke Javascript from Android

s myWebView.loadUrl("javascript:"+”
print(Android.showToast('Hello World’))”);

0 /+ case 2: load a webpage (potentially executing
JavaScript), the object "Android” persists as property
of the DOM’s global object «/

11 myWebView.loadUrl( "http://www.dummypage.com”);

12}

Listing 2: Leaker.java

1 // Add a Javascriptinterface annotation before the method you
want to bridge

2@Javascriptinterface

spublic String showToast(String toast) {

+ TelephonyManager tManager = (TelephonyManager)
mContext.getSystemService(Context.
TELEPHONY_SERVICE);

s String uid = tManager.getDeviceld(); / get the device ID

¢ return uid;

7}

to some untrusted web server together with more information
the user enters into the web page. Note that state-of-the-art
information flow analyses for Android cannot report these
flows as they have no information whether the WebView’s
code actually leaks the shared data (even worse, many do

not even consider loadURL a sensitive information sink [16]]).

To further investigate this scenario, access to this webpage is
required. Static analysis of these scenarios is non-trivial as
any static analysis of JavaScript code is challenging due to its
highly dynamic nature [17]] and as it additionally requires a
careful inspection of the various aspects of the WebView class
and its bridge mechanism. Therefore, it becomes critical for
program analyses to fully understand the behavior of loadUrl
and addJavascriptinterface. The aim of our work is to provide
this information by performing a large scale study of real-world

apps.
IV. METHODOLOGY

Figure [I] presents the workflow of LUDroid’s analysis
framework. It consists of the following modules: IFCAnalyzer,
ResourceExtractor, UrlAnalyzer, and JSAnalyzer. LUDroid
decompiles an APKE| using APKTool [18]]. The decompiled
output contains the app’s resources and source code in the
Smali [19] format. In the IFCAnalyzer module a backward

'An APK is the binary output of an Android application.
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Fig. 1: The workflow of LUDroid

slice (A list of statements that influence a statement [20]) for
the method addJavascriptinterface is computed to analyze
the information flows from the Android to the Javascript
side. The ResourceExtractor module extracts the resources
that are passed as parameters to the method loadUrl, like the
protocol of the passed URL. This information is stored in a
database and passed as an input to the modules UrlAnalyzer
and JSAnalyzer. The UrlAnalyzer module analyzes the URLs
provided as String argument to the loadUrl method. It validates
the URLs and extracts various features, like the used protocol,
which facilitates the analysis of URLs in hybrid communication.
Similarly, the JSAnalyzer module analyzes the JavaScript code
that is passed to the loadUrl method. In the followings we
discuss each module in detail.

A. IFCAnalyzer

The aim of this module is to understand the nature of the
information flow from Android to JavaScript. We label a piece
of information as sensitive if leaking it will violate its owner’s
privacy. To this end, we leverage sensitive sources defined
by [16] to identify the sensitive information in Android. In
particular we answer the following research questions:

o RQ1.1: How pervasive is information flow from Android

to JavaScript?

e RQ1.2: Do these information flows include sensitive

information?

Figure [2] describes the workflow of the IFCAnalyzer module.
For every occurrence of the method addJavascriptinterface
we compute its backward slice to identify the corresponding
WebView initialization. The addJavascriptinterface method
injects the Android object into the corresponding WebView.
It takes two parameters: The first is a Java object, the second is
the name of the associated object. If Javascript is enabled on
this WebView, the loaded web pages can invoke the methods
exposed by the shared Java object (cf. Listing [2). As we are
interested in the exposed functionality of this Java object, we
extract the corresponding class and supported methods: Not all
methods of the Java object are bridged. Only methods annotated
with @Javascriptinterface are made available to Javascript. We
then identify (potential) sensitive information flows originating
from these methods: Javascript could invoke these methods to
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leak the returned sensitive information. Finally, we store the
analysis results into a database.

B. ResourceExtractor

The loadUrl method loads a specified URL given as string
parameter (cf. Listing [T] line [TI). If the input string starts
with “javascript:”, the string is executed as JavaScript code
(cf. Listing [T} line 0). The aim of this module is to extract the
URLSs and Javascript code passed to the loadUrl method. We
create an intra-procedural backward slice on loadUrl, extract
the input strings, and store them along with their originating
class’ name. As input strings are often constructed via various
String operations, (e.g., using StringBuilder to concatenate
strings), we extend LUDroid with domain knowledge on the
semantics of the Java String class. LUDroid understands the
Smali signature of String methods and applies partial evaluation

to infer strings created by various String manipulation methods.

However, at the moment we do not support complex string
operations such as array manipulation. Future work may extend
the support for such operations and simple obfuscations. At
the moment we concentrate on the features of the loadURL
parameters that can be extracted with reasonable effort. The
output of this module is fed to the UrlAnalyzer and JSAnalyzer
modules to interpret and categorize the URLs and Javascript.

C. URLAnalyzer

URLAnalyzer has two functions: (1) it checks the validity
of a URL, and (2) extracts its essential features. URLAnalyzer
reads the passed URL inputs from ResourceExtractor, parses
them, and extracts the following set of features:

« Protocol - The application layer protocol used within the

URL, e.g., HTTP.
e Host - This can either be a fully qualified domain or an
IP address of the corresponding host.

o Port - The port (if specified) of the host the request is

sent to.

o Path - The path (if specified) on the host the request

is sent to. Such a path can for example be specified for
HTTP or FTP URLSs, but also for local file URLs.

o Search The search part (if specified) of HTTP URLs.
This is the remainder of a HTTP URL after the path, e.g.,
7Ix=5&y=9".

o Fragment The fragment is an optional part of the URL
that is placed at the end of the URL and separated by a
#.

RFC 3986 [21] defines the specification of an URL in
augmented Backus-Naur form. URLAnalyzer validates each
provided URL against this definition in order to detect mal-
formed URLs. For every URL, URLAnalyzer either confirms
that the URL was correctly built or prints a detailed message
why the URL is malformed.

We also categorize the URLs that are created by third-
party libraries (SDKs). These libraries use loadUrl to load
their custom URLs and provide the intended functionality
to other app developers, e.g., Facebook SDK for Android
provides Facebook authentication service to other apps. Finally,
URLAnalyzer outputs a database containing the analysis results,
that are to be reported by the Reporting module.

With respect to the above features we answer the following
questions:

e RQ2.1: What is the distribution of protocols used in

loadURL?

e RQ2.2: What percentage of URLs point to files on the
device that are assumed to be trusted as they were packed
together with the application?

o RQ2.3: What is the distribution of hosts? Do host hotspots
exist, i.e., hosts that requests are being sent to from many
different applications?

o RQ2.4: What is the distribution of resource access within
one host discriminated by its path?

o RQ2.5: What percentage of URLs leverage unencrypted
network communication e.g., HTTP, FTP?

e RQ2.6: Which of the external SDKs cannot be identified
and are considered untrusted?

D. JSAnalyzer

JSAnalyzer uses the strings constructed by ResourceExtractor
and builds a database summarizing the patterns used in raw
javascript passed to loadUrl. The results in the database
are further manually analyzed for the features mentioned in
the subsequent paragraphs. The components of JSAnalyzer
primarily consist of scripts for automation and reporting.

1) Information Flow from Javascript to Android.: The
Android SDK allows app developers to annotate setfer methods
with JavaScriptinterface. This supports the reuse of existing
web-based functionality in Android by transmitting the results
from a web-based/JavaScript method to the Android object. It
creates an information flow from the external web application
to the Android app. In this paper, we identify use-cases of this
behavior.

2) Obfuscated and unsecured Code.: Many third-party
library developers use code obfuscation to protect their intel-
lectual property. It is also possible to inject remote third-party
libraries in JavaScript using unsecured protocols such as HTTP.



Uses WebView | | 5,083

JS Enabled | | 4,469

Injects Class [ ] 2,256

Sensitive Flows [| 1,330

Fig. 3: Hybrid API usage (Over 7500 apps)

TABLE I: Top ten app categories with type of information
shared from Android to JavaScript

[ App category | Type of information |

Social Cookies, File system
Entertainment Account Information, File system, Network Information, Location
Music & Audio Account Information, File system, Network Information
LifeStyle Activity Information, Application level navigation affordances, Locale

Board Games
Communication
Personalization

Books & Reference
Puzzle
Productivity

Date and Time, Location, Network Information
Activity Information, File system, Location, Network Information
Activity Information, Account Information, File system, Location
File System, Location, Network Information
File System, Internal Memory Information, Location
File System, Internal Memory Information, Network Information

In this work we identify the patterns in which these libraries
are obfuscated or used insecurely.

3) Pass Native Information to Third Parties.: Many apps
pass device specific native information to third-party libraries.
This user-sensitive information is leveraged by third-party li-
braries to enhance their services. However, it can be detrimental
to the privacy of the user. In this work, we identify cases of
passing sensitive information to third-parties.

In particular, we answer the following questions

o RQ3.1: How frequent is third-party script injection used

in raw JavaScript passed to loadUrl?

e RQ3.2: Is there non-trivial information flow from

JavaScript to Android?

e RQ3.3: Do third-party libraries that use loadUrl leverage

obfuscation?

V. EVALUATION

We evaluated LUDroid on 7,500 random applications from
the Google Play Store (published between 2015-2018) to
understand hybrid apps’ communication patterns in the wild.
In the following we answer the research questions raised in
the aforementioned analysis modules.

All experiments were performed on a MacBook Pro with
a 2,9 GHz Intel Core i7 processor, 16 GB DDR3 RAM, and
MacOS Mojave 10.14.1 installed. We used a JVM version 1.8
with 4 GB maximum heap size.

A. IFC from Android to Javascript

RQL1.1: How pervasive is information flow from Android to
JavaScript? Figure [3] provides the distribution of apps based
on various characteristics of hybrid communication. 68% out
of 7,500 apps use WebView at least once, i.e. are hybrid apps,
which is a significantly high percentage. As JavaScript is not
enabled by default, 87.9% of hybrid apps enable JavaScript

TABLE II: App components with the shared sensitive informa-
tion (from Android to JavaScript)

App Name Category Component Name Tnformation shared

Tnstagram Social BrowserLitcFragment Cookics

TASKA AR MARYAM Entertainment Map26330 Location (GPS)

Classical Radio Musik & Audio MraidView

External storage file system access, Network Information

BLive Lifestyle LegalTermsNewFragment Location

Cat Dog Toe Board Games appbrain.a.be Location, Network Information

Location, Network [

N.s.t. A-Tech C ax

Pirate ship GO Keyboard BannerAd Device ID, Device’s Account information, Locale

IQRA QURAN Books & Reference Map26330 Location

Location

Logic Traces Puzzle SupersonicWebView

FLIR Tools Mobile LoginWebActivity Network Information

while the remaining 12.1% use WebView solely for static
webpages. Half of the components enabling JavaScript establish
an interface to JavaScript via addJavascrtiptInterface and bridge
an Android object to JavaScript. Therefore, 30% of the apps
used in our dataset and 43% of the hybrid apps transfer
information from Android to JavaScript. Table[[| presents the top
ten app categories and the corresponding types of information
shared with JavaScript. Note that in this work we do not
investigate what happens to this data on the JavaScript side,
i.e., whether it actually leaks to some untrusted entity. The
focus instead is to identify scenarios in the wild that need to be
taken into consideration when attempting to design an analysis
for hybrid apps.

RQ1.2: Do these information flows include sensitive infor-
mation? 18% of the total apps in our dataset share sensitive
information from Android to JavaScript. LUDroid finds 6375
sensitive information flows from Android to JavaScript: Only
18% of these flow to URLSs located inside the app, i.e., using
the file protocol. Note that the inclusion of JavaScript code into
an app does not guarantee its trustworthiness, as third party
code is regularly included into apps. Thus 82% (or more) of the
sensitive information flows could leak to potentially untrusted
code. Table [lI| presents 10 randomly selected app{] for each
category mentioned in Table [ along with their corresponding
components and shared sensitive information. The majority of
these flows include location information, network information
and file system access. Starting from HTMLS, various web
APIs provide access to sensitive information such as the
geographical location of a user. In contrast to Android’s
permission system where users need to approve the permissions
just once (potentially in a completely different context), web
users would need to approve the access each time or they can
provide it for one day. It appears that this might be one of the
reason that developers rather propagate sensitive information
from Android to the Web, but this compromises users’ privacy.

B. URL statistics

LUDroid resolves 3075 distinct URLs. In addition it finds
4980 URLs dynamically created using SDKs. Figure |4{ shows
the distribution of protocols in the resolved URLSs passed to
the loadURL method (RQ2.1). 40.81% of the URLs use the
trusted file protocol pointing to the device’s local files, while the
remaining point to external (potentially trusted) hosts (RQ2.2).
Naturally, developers have more control over these offline
local files. While this is good for trusted entities, malicious

2Due to the size limitation we could not publish the entire list.
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Listing 3: WebViewActivity class in
com.zipperlockscreenyellow (manually translated to Java and
simplified)

1webView.removeAllViews();

2webView.clearHistory();

swebView.clearCache();
swebView.loadURL("about:blank’);

entities could easily launch phishing attacks by designing offline
pages that look similar to trusted web pages. Only good user
practices can prevent these attacks from happening: Ideally,
APKs should not be downloaded from other sources than
the official Play Store. Additionally, users should properly
verify app metadata and permissions. As local web pages come
bundled with the APK files, they can be taken into account
during analysis. However, an analysis might need to consider
several security aspects such as, identifying phishing attacks,
discovering privacy leaks, or finding keyloggers.

In addition to local file URLs, we discovered that in 41.24%
of the resolved cases the URL argument was “about:blank”,
which displays an empty page. According to Android’s Web-
View [5] documentation about:blank should be used to “reliably
reset the view state and release page resources”. As an example,
we discovered about:blank in the WebViewActivity class of
the app com.zipperlockscreenyellow. In this class the method
killWebView releases the view’s resources (see Listing [3). After
clearing the history and the cache this method opens a blank
page in the WebView.

Considering the network URLs, the most-frequently loaded

TABLE III: Selected list of Top-8 SDK hosts, its app share,
and a common use case found in the top SDK categories

Category
Social Networking

[ Host [ Percent | Common Use Case |

20.32

Facebook Authentication

App monetization Vungle 1.75 | Monetize Apps by targeted advertising
‘Web Services Google 10.58 | Authentication

Online App Generator SeattleClouds 5.99 | Unknown (obfuscated)

Outsourcing biznessapps 1.89 | Unknown (obfuscated)

Mobile Development PhoneGap 1.52 | Platform-independent development
E-Commerce Amazon 1.1 | Sales

Others Ons 0.8 | Rendering ebooks

ECommerce | 1.15
Mobile Development [] 1.26
Outsourcing [ ] 3.44
Online App Generator | ] 8.64

Untrusted/Unknown ] 13.89

Web Services | ]16.46
App Monetization | | 20.94
Social | | 27.77

Fig. 5: Distribution of SDK usage in apps by categories (Top
eight)

hosts per category in the analyzed apps are listed in Table
We find that Facebook and Google SDKs are widely used in
apps, primarily for authentication purposes. In addition app
monetization and customer analytics SDKs are found in 18.04%
of the apps (cf. Figure [5). Figure [5] displays all host categories
sorted by their share (RQ2.3). We find that a majority of the
analyzed apps use social networking SDKs or app monetization
SDKs.

Mobile application development frameworks such as Cor-
dova or PhoneGap allow developers to use HTML/CSS and
JavaScript to develop Mobile apps. These libraries primarily
use bridge communication between native Android and web
technologies [22]]. In our study we find that 1.26% of the
apps use these frameworks for mobile application development
(referred in Figure [5] as Mobile Development).

The 535 URLs that point to a network resource only
reference 147 distinct paths. This indicates that in many cases
identical host and path combinations were requested by several
apps (RQ2.4). In approximately 1.68% of the external URLs
the host’s port was specified. Additionally, 20.37% of the URLs
(HTTP/HTTPS) specify an argument pattern.

While evaluating URLs we gained several relevant security
insights. We found that 11.87% of the calls of loadUrl
resulted in unencrypted network traffic, making a total number
of 365 communications. Table [[V] shows five examples of
unencrypted HTTP URLs together with the packages in
the corresponding app (RQ2.5). The usage of unencrypted
protocols with loadURL may result in eavesdropping and
phishing vulnerabilities. We demonstrate how to exploit such
vulnerability in section Another security threat is caused
by untrusted SDKs using loadURL. We find a total of 13.89%
apps use untrusted SDKs (RQ2.6). However, in this context
untrusted may or may not refer to a malicious SDK. It is
non-trivial to classify untrusted SDKs as malicious due to



TABLE IV: Five out of 365 loadURL calls using the insecure
HTTP protocol

URL

http://www.dhcomms.com/
applications/dh/cps/google/main_
agreepage01.html
http://pinterac.net/dev/leapersheep/
index.php?viewall=1
http://docs.google.com/gview?
embedded=true&url=http://www.
rblbank.com/pdfs/CreditCard/
fun-card-offer-terms.pdf
http://images.yemeksepetim.
com/App_Themes/static-pages/
terms-of-use/mastercard/mobile.
htm

http://ecosway.himobi.tw

Package Name

com.JLWebSale20_11

net.pinterac.leapersheep.main

com.quietgrowth.qgdroid

net.lokanta.restoran.arsivtrkmutfagi

com.cosway.taiwan02

absence of common patterns in these SDKs. Therefore, we
take a conservative approach where an SDK is untrusted if
there is no public information available on the web. Clearly,
security testing of untrusted SDKs is imperative to ensure the
integrity of one’s code. However, many programmers include
desired functionality into their projects without considering the
security implications.

Another interesting observation is the usage of online app
development platforms. These development platforms allow
users to build an application with minimal technical effort and
programming background. From the collected data, we find
using manual inspection that approximately 8.64% (cf. Figure[3)
of the apps use an online app generation platform. A potential
threat to these applications is that the developer/app provider
using the online app generators neither has the knowledge about
the internal details of these apps nor do they perform rigorous
testing. A recent study on these online app generators (OAG)
found serious vulnerabilities in various OAG providers [23]].
Again, programmers should not rely blindly in the quality of
external tools and perform additional validation of the resulting
app’s security properties. Unfortunately, OAGs are particularly
intriguing to developers with low technical expertise, so the
creators of these platforms have a responsibility.

We discover 18 instances (see e.g. URL for
com.quietgrowth.qgdroid in Table [[V) where a call to
loadURL was used to display a PDF via Google Docs, which
is considered a misuse of WebView. To deliver content such
as files to users the WebView documentation recommends
to invoke a browser through an Infent instead of using a
WebView [24]. It appears that developers prefer users to stay
in the app for viewing the documentation and thus rather use
WebView to accomplish this task.

C. Vulnerability Case Study: Unprotected URLs
As described in section [V-B] one piece of data URLAnalyzer

determines is whether a URL passed to loadURL is unprotected.

An unprotected URL is a URL that points to a network resource
and is not protected by any cryptographic means (e.g. TLS).
In our evaluation we discovered 365 calls to loadURL with
unprotected URLs, all of which connect via HTTP.

16:48 P O®40 16:53 B P O®40
Attackers page:
=  ENDINGSCENE. Q= Userarne:

Password:

#Graphics
Video

Make Promotional Motion
Graphics Animated Video with
our skilled visual artists

Fig. 6: The EndingScene app without and with being attacked
(In a realistic attack the phishing web page may be easily
copied from the original web page)

The loadURL method embeds a web page into the Android
application. When using unprotected URL for loadURL an
attacker can read the requested webpage, and even more severe,
manipulate the server’s response that is to be displayed to the
user. This is particularly critical as an attacker-controlled web-
page is then being shown in the context of a trusted application.
The user may be oblivious to the difference between content
displayed in a WebView and content displayed in other Ul
components as WebViews are designed to seamlessly integrate
into the native UI components. Depending on the concrete
vulnerable application and the placement of the vulnerable
WebView in the native U, various attack scenarios are possible.
One of these attack scenarios is a phishing attack where a
malicious login page is displayed to the user within the app.
As the app is trusted by its users, they are likely to enter their
credentials into the phishing page.

Case Study: EndingScene app: To demonstrate the
described attack, we have randomly chosen one of many
vulnerable applications, EndingScene (v 1.2EI), a video material
promotion app. Immediately in the initial activity, this app
loads a webpage and displays it to the user. This scenario is
ideal for an attacker, as every user will be presented this initial
front page, and the activity consists of nothing else but the
front page. In addition, it is very plausible to ask for some
type of credential on this front page.

We implemented the network attack using mitmproxy [25],
a HTTP proxy that can save and manipulate inflowing traffic.
We developed a small Python script for use in mitmproxy. It
substitutes the server’s response to the front page request with
a self-written malicious login page, which sends the entered
credentials to an attacker.

Figure [6] depicts the successful exploitation of the End-
ingScene app when using our proxy. The left-hand side shows

3md5: 7516ddd1bc9d056032ac3173e71251b0



Listing 4: Dynamic Script Loading in loadUrl

1 javascript : (function() { var
script=document.createElement(’script’);

2 script .type="text/ javascript ’;

3 script .src="http :// admarvel.s3.amazonaws.com/
js/fadmarvel_mraid_v2_ complete.js’;

+ document.getElementsByTagName('head’)
.item(0) .appendChild(script);}) ()

the regular front page of EndingScene while the right-hand side
displays the phishing page when the network traffic is being
attacked. Evidently, a malevolent entity would create a much
more convincing phishing page, our page is for illustration
purposes only, to make the attack obvious. This type of attack
in general is not new, however, related work [26]—[28] has not
detected them in the investigated context of hybrid apps, which
may lead to novel attack vectors.

As the described vulnerability is caused by the lack of
encryption and signing, it may be avoided by using the transport
layer security (TLS) versions of the protocols (e.g. HTTPS,
FTPS). Additionally, it is recommendable to make use of
certificate pinning in order to prevent threats from corrupted
certification authorities.

D. Javascript statistics

In this section we present initial insights on JavaScript
code that LUDroid identified to be passed to bridge methods
i.e. loadUrl() or evaluateJavascript(). Based on our manual
analysis, we classify the JavaScript code into two categories: (1)
involving event-driven functionality using the interface Event,
and (2) modifying the Document Object Model (DOM) without
event-driven functionality. We find that 64% of those trigger
event-driven functionality while 31% modify the DOM only.
We were unable to resolve 5% of the JavaScript strings owing
to our current limitations of IFCAnalyzer.

1) Frequent JavaScript Code: We identify a set of 73 distinct
JavaScript code snippets passed to bridge methods in all
investigated apps. Given this low number in relation to the
total number, it was not surprising to identify that most of
these originate from third-party libraries. Interestingly, the
codes identified using evaluateJavascript are a subset of those
found with loadURL, therefore, we will restrict ourselves to
the discussion of the latter in the sequel. In what follows, we
illustrate the four most interesting cases relevant to understand
the developers’ intentions.

Case Study: Third party script injection in loadUrl: We
identify the case of a third-party script injection that occurs
in 3 out of 73 frequent code snippets. One example of such a
script is mentioned in Listing [4] Similar instances are present
in 8.33% (RQ3.1) of the analyzed apps. The script loads a
third-party JavaScript code by injecting it into the header of the
displayed webpage, resulting in a modification of the global
state of the page. In this example, the developers used an
unsecured protocol (HTTP, cf. Line [3] Listing ). This scenario
makes the webpage and thus the whole Android app susceptible
to a man-in-the-middle (MITM) attack, where an attacker can

Listing 5: Modifying the bridged Android object named
SynchJS

1 javascript :window.SynchJS.setValue((function(){

2 try{

3 return JSON.parse(Sponsorpay.MBE

.SDKinterface.do_getOffer()).uses_tpn;
4 tcatch(js_eval_err){
s return false;

s 1H0);

Listing 6: Excerpt of source code for SynchJS object in
Listing [5] Source: Github [29]

1public class SynchronousJavascriptinterface {
2 /I javascript interface name for adding to web view
3 private final String interfaceName = "SynchJS”;
4 private CountDownLatch latch; // Countdown latch to wait
for result
s private String returnValue; // Return value to wait for
6 public String getJSValue(WebView webView, String
expression) {
7 latch = new CountDownLatch(1);
8 String code = "javascript :window.” + interfaceName +
”.setValue((function() {try {return ” + expression +
"+\"\";}catch(js_eval_err){return ";}}) ());”;

9 webView.loadUrl(code);

10 try { // Seta 1 second timeout in case there’s an error
1 latch .await(1, TimeUnit. SECONDS);

12 return returnValue;

13 } catch [..] return null; }

14 /I Receives the value from the javascript .

15 public void setValue(String value) {

16 returnValue = value;

17 try { latch.countDown(); } catch (Exception e) {} }}

intercept the connection and replace the script loaded from
script.src with malicious JavaScript. However, the user
trusts the app and is completely oblivious to the script being
downloaded, and the fact that it might be replaced and thus
violates the integrity of the app. This attack is implemented
in analogy to the attack described in Section [V-C| where the
login page was substituted by a malicious page.

Case Study: Information flow from JavaScript to Android:
Contrary to common intuition we identify interesting cases of
information flow from JavaScript to Android in 8.7% (RQ3.2)
of the investigated apps. Listings [5] and [7] show examples of
this behavior.

Listing [5] is particularly interesting as it leverages a syn-
chronous communication channel from Android to JavaScript
and back. In Listing [5} a method serValue() is invoked on
a bridged object SynchJS. The method setValue() is a setter
method defined in the class SynchronousJavascriptinterface ex-
cerpted in Listing [6} Note that the code of Listing [5]is generated
in the method getJSValue (line @, where Android executes the
parameter expression in the context of the WebView and waits
(line [TT) for the thread evaluating the JavaScript code to invoke
the bridged setValue method. Line [3|in Listing [5| reads the field
uses_tpn of an object deserialized from a third-party library
method Sponsorpay.MBE.SDKInterface.do_getOffer and passes
that value to the setter method in SynchJS. When this method



Listing 7: Information Flow from JavaScript to Android

1 javascript :(function() {

> var metaTags=document.getElementsByTagName('meta’);
3 var results = [J;

4 for (vari =0; i < metaTags.length;i++) {

5 var property = metaTags[i]. getAttribute (’property’);

6 if (property && property.substring(0, ’al:’.length) ===
al:’) {

7 var tag = { “property”:
metaTags[i]. getAttribute (' property’) };

8 if (metaTagsli].hasAttribute(’content’)) {

9 tag[’'content’] =

metaTags|i]. getAttribute (' content’);

}
1 results .push(tag); }} // if end
12 window.HTMLOUT
.processJSON(JSON.stringify(results));})()

is invoked inside the WebView’s thread, the field returnValue
is changed (line [T6] of Listing [6). The implementation then
notifies Android’s Ul thread via a call to latch.countDown(),
which basically implements a simple semaphore such that the
waiting Android thread can continue its execution and return
the value retrieved from the WebView (line [T2).

Listing [/] writes meta-tags information of a HTML page to
an Android object. Line construct an array of objects with
properties property and content. This array is then converted to
a string in JavaScript Object Notation (JSON) representation
(line [T2)) before being passed to the processJSON() method of
the bridged object HTMLOUT. Note that due to the fact that
the processJSON method runs in a different thread than the
regular Android code [24]] the Java Memory Model may not
allow the Android code to see any changes performed to the
state of the bridged (and other) objects unless some form of
synchronization is being used as in Listing [6]

Android WebViews feature an event system that reacts to
many different events in the WebView. The Android SDK
allows to override the default WebView Chromeless browser
window and specify their own policies and window behavior

through extending a Java interface called WebViewClient.

Interestingly, we also identified many similar codes during
handling of WebViewClient events. As an example, developers

can modify the behavior when e.g. the WebView client is closed.

Our study finds that many developers transfer results from
JavaScript to Android after the WebView client terminates by
modifying the onPageFinished() method in the WebViewClient
interface to invoke JavaScript.

This case-study shows the use of sophisticated patterns by
developers for communication from Android to JavaScript and
vice-versa. Our study shows intricate cases of using setter
methods to permit non-trivial dataflow from JavaScript to

Android, in some cases even using (required) synchronization.

Restricting the bidirectional communication impacts the
flexibility provided by WebView to developers. Instead static

analysis techniques could be leveraged to detect and re-
port similar insecure data flows. However, a simple context-

insensitive static analysis on Listing [5] using approaches such
as HybridDroid [8]], or Bae et. al. [[30] will be unsound. The

1

1

Listing 8: Leaking Sensitive Information

javascript : function actionClicked(m,p) {

var q = prompt('vungle:’+JSON.stringify(
{method:m,params:(p?p:null)}));

if (q&&typeof q 'string’){return
JSON.parse(q).result;} };

function noTapHighlight(){
var |=document.getElementsByTagName(’+');
for (var i=0; i<l.length; i++){

[[i]. style .webkitTapHighlightColor=
‘rgba(0,0,0,0)";

H

noTapHighlight();

if (typeof vunglelnit == 'function’) {
vunglelnit ($webviewConfig$);}

Listing 9: Complex control flow via JavaScript
javascript :(function() { Appnext.Layout.destroy('internal ') ;

unsoundness stems from the analyses’ limitation to analyze
the described callback communication methods, thus only
supporting one-way communication from Android to JavaScript.
A precise and sound static analysis would need to consider these
non-trivial methods of callback communication that establish
a two-way communication channel.

Case Study: Device Information to Third-party: This
case study presents the leak of device information to third-
party libraries. Listing [§] is taken from an advertising library
Vungle. Line |8 removes the highlight color from each element.
Therefore, the function noTapHighlight() makes it susceptible
to a confused-deputy attack such as clickjacking. It obscures
user clicks, letting the user click on the advertisement without
their knowledge. Additionally, Line [T1] can potentially leak
Vungle’s WebView configuration object that identifies a device
to some web server, in this example through the function
vunglelnit(). WebView settings have sensitive information about
the host devices that is also used by WebViewClient.

Case Study: Code obfuscation in Third-Party libraries:
This case study shows an interesting obfuscation pattern
using loadUrl to deliberately prevent program analyzers from
inferring the intended functionality. Need for obfuscation arises
from concerns about keeping the intellectual property, or from
trying to hide debatable or, worse, malicious behavior.

Appnext is an ad-library which is widely used for app
monetization. Listing [0] shows a code snippet found in its library
code. In this code a Java object Appnext is being bridged and
used in JavaScript invoked from Android. This functionality
could have been directly implemented in Android/Java itself.
It is unclear why the programmers chose to implement it by
crossing a language-bridge from Android to JavaScript and
back, which is similarly expensive as an eval in JavaScript
instead of the direct invocation. We have discovered this pattern
in 25% (RQ3.3) of the apps, which makes this potential
obfuscation pattern prevalent among Android apps.

By introducing another layer of complexity added to inter-
language analysis, obfuscation increases the difficulty for



program analysis tools to infer the actual functionality. A
precise and sound analysis of these patterns is required for
useful analysis results. Obfuscation patterns in Android apps
are discussed in detailed in a recent large scale study [31].

VI. DISCUSSION

Using LUDroid we were able to derive a plenitude of novel
statistics covering information flow information, URL statistics
and statistics on JavaScript code. Additionally, we detected
URL based vulnerabilities. At this point LUDroid is not a
stand-alone analysis tool but merely supports manual inspection
and calculation of statistical data. The goal of this work is to
present interesting insights on how the bridge between Android
and JavaScript is used in the wild in order to facilitate the
design of automatic program analysis that take both sides of
the hybrid app into account. We will share our collected data
after acceptance of this manuscript.

Other common limitations of static analysis are native
code, reflection, dynamic control flow and obfuscation and
the fact that strings like the URLs passed to loadURL may
be constructed at runtime. All of these obstacles have been
investigated in separate lines of research [32]-[37] so we
consider them orthogonal to the insights we are aiming at
in this study. Note however, that loadURL is also a dynamic
language feature that—Ilike reflection—may execute code that
is constructed at runtime based on a string parameter. Insights
gained in studies that target dynamic code execution (e.g. for
JavaScript [38]]) are also relevant to understand the semantics
of loadURL.

VII. RELATED WORK

Rizzo et al. [[11] proposed BabelView, which models
Javascript as a blackbox. They leverage static taint analy-
sis to detect unwanted information flows and five different
vulnerability types. Zhang et al. [39] performed a large
scale study of the WebView APIs to classify them into four
categories of web resource manipulation. Hidhaya et al. [|12]]
described the “’supplementary event-listener injection attack” in
Android WebViews. They further proposed a tool for automated
detection of this vulnerability and a mitigation. Li et al. [40]]
discovered a new type of WebView-based attack that they call
Cross-App WebView Infection (XAWI). Mandal et al. [13]]
proposed a static analysis tool to detect various vulnerabilities in
Android Infotainment applications. Their approach is based on
Julia, a static abstract interpretation analysis tool. Fratantonio
et al. [14] proposed a static analysis tool to detect malicious
application logic in Android apps. Their approach is based
on various known static analysis techniques such as symbolic
execution and inter-procedural control-dependency analysis. In
contrast to these approaches, our work is not limited to specific
vulnerabilities, but provides useful insights by inspecting both
Android and Javascript code.

Lee et al. [8] proposed HybriDroid, an information flow
analysis tool based on WALA. They discussed the semantics of
WebView communication including type conversion semantics
between Java and Javascript. In contrast to our work, Lee et

al. do not analyze the behavior of loadURL. In addition, their
approach is restricted to the taint analysis of the Information
flow from Android to Javascript, and thus miss other insights.

Neugschwandtner et al. [41] proposed two attack scenarios
based on when the client or server is compromised. Their
approximation is quite coarse in case of privacy leakage where
a trusted channel could leak more than the required information.
Mutchler et al. [42] conducted a large-scale study of apps using
WebView aiming at the security vulnerabilities present in these
apps. However, this study focuses only on particular types
of vulnerabilities and they did not consider the misuse of
Javascript in 1oadURL. Yang et al. [15] examined so called
“Origin Stripping Vulnerabilities” caused by wrongly using
the loadURL method. Bae [30]] formalized the semantics of
the android interoperations between Java and Javascript. Their
approach proposed a type-system based error detection for
MethodNotFound errors. However, their approach does not
consider the information flow from JavaScript to Android
Java. In addition to a large scale study, Kim et al. [43]
leveraged abstract interpretation to design a static analysis that
finds privacy leaks in android applications. Targeting excess
authorization and file-based cross site scripting attacks, Chin et
al. [44] proposed Bifocals, a tool to detect these vulnerabilities.
However, these analyses focused on one particular part of the
problem. Our study is targeted at analyzing all programming
patterns which may potentially lead to vulnerabilities.

In general the analysis of unencrypted communication in
Android apps is a well-explored topic [26]-[28]]. For example,
Pokharel et al. [26] demonstrated eavesdropping attacks on
VoIP apps. However, to the best of our knowledge no previous
work has analyzed the security consequences of unencrypted
communication caused by loadURL.

VIII. CONCLUSION

In this work, we present a large-scale analysis of loadURL
usages in real world applications. The statistical results
include numerous features, such as information flow data,
URL statistics and javascript code features on a set of 7,500
randomly selected applications from the Google Playstore.
We implemented our semi-automatic analysis approach in a
tool called LUDroid that computes the data by using slicing
techniques. As a side effect LUDroid discovered many instances
of a vulnerability considering the usage of unprotected protocols
in URLs. To demonstrate the validity of these vulnerabilities
we exemplarily showcased the exploitation of one of them.
The insights gained in this study provide valuable input for
designing program analysis that are to analyze hybrid Android

apps.
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