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Abstract Static analysis frameworks, such as Soot and Wala, are used
by researchers to prototype and compare program analyses. These frame-
works vary on heap abstraction, modeling library classes, and underlying
intermediate program representation (IR). Often, these variations pose
a threat to the validity of the results as the implications of comparing
the same analysis implementation in different frameworks are still un-
explored. Earlier studies have focused on the precision, soundness, and
recall of the algorithms implemented in these frameworks; however, little
to no work has been done to evaluate the effects of program represen-
tation. In this work, we fill this gap and study the impact of program
representation on pointer analysis. Unfortunately, existing metrics are
insufficient for such a comparison due to their inability to isolate each
aspect of the program representation. Therefore, we define two novel
metrics that measure these analyses’ precision after isolating the influ-
ence of class-hierarchy and intermediate representation. Our results es-
tablish that the minor differences in the class hierarchy and IR do not
impact program analysis significantly. Besides, they reveal the sources of
unsoundness that aid researchers in developing program analysis.

Keywords: Pointer Analysis, Java, Program Analysis, Empirical Studies

1 Introduction

Researchers have proposed various approaches to enhance the precision and
soundness of static analyses [6,9,10,14,17,26,30,31]. They use program analy-
sis frameworks to prototype and evaluate their algorithms. A program analysis
based on declarative specifications (a growingly popular implementation para-
digm) uses these frameworks to extract fundamental dataflow relations and feeds
them as the ground facts to a Datalog engine.

Program analysis frameworks, primarily Soot and Wala, are being increas-
ingly adopted in program analysis [11,31,40]. These frameworks provide APIs,
which abstract internal program representation. However, program representa-
tion in these frameworks is heterogeneous in many aspects. A few of those are:
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— Intermediate Representation (IR). The intermediate language for program
representation is an abstraction of the object code (bytecode) or source code.
It removes syntactic sugar from the language and transforms it into a (mini-
mal) core language. Thus, analysis developers can focus on the core language
features to define their analysis.

— Modeling of libraries in analysis scope. Real-life applications are seldomly
developed from scratch; instead, they reuse library modules. Whole-program
analyses consider these libraries for soundness in terms of the class-hierarchy,
which forms the analyses’ scope. Users can tune the scope to favor scalability
over soundness.

— Heap Modeling. Heap modeling is the technique to model dynamic heap al-
location statically. Precise heap modeling is undecidable; therefore, analyses
use approximations to keep it decidable [20]. Apart from these approxima-
tions, optimization may choose to keep a low memory footprint at the cost
of precision and soundness.

These factors influence the precision, scalability, soundness of the analyses,
and at the same time, impede a fair comparison of analyses. Earlier research
(Spéth et al. [29]) was concerned about the validity of results when comparing
two analyses frameworks. Reif et al. consider the comparison of different frame-
works “bogus” [21] at the outset. Although many earlier works have proposed
techniques to enhance scalability and precision, little to no work was done on
how program representation influences program analyses. As a result, a com-
parison of new analyses with existing analyses suffers from a threat to validity
that might have been overlooked. In this work, we fill the gap with an empirical
study of these aspects of program analysis frameworks.

We choose pointer analysis for this study. Pointer analysis computes the heap
locations referred by program variables and builds the foundation for many oth-
ers, such as alias analysis, type-state, or program slicing. To evaluate interme-
diate representation and library modeling, we choose Doop, a state-of-the-art
pointer analysis framework and compare its analysis for different frontends. For
the third aspect, heap modeling, we compare the pointer analysis of Wala’s (a
state-of-the-art program analysis) framework with Doop using Wala’s frontend,
i.e., leveraging the identical intermediate representation.

A challenging aspect of this work is that the existing notions of precision
for pointer analysis were insufficient. The computation of these metrics does
not isolate single aspects of pointer analysis but rather combines all effects.
For example, the average points-to set size is influenced by all three of the
aforementioned aspects. It is difficult to determine the effect of each aspect by
only looking at the score. In this work, we counteract this problem by introducing
metrics that isolate a particular aspect under study and nullifies the effect of
others. Therefore, we define two novel metrics in section 3.1, one for measuring
the effects of libraries to enable a fair comparison among frameworks. To the
best of our knowledge, it is the first study that evaluates the impact of program
representation on pointer analysis. Precisely, in this paper, we make the following
contributions:
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— We defined two metrics for evaluating each aspect in isolation, one for mod-
eling of library classes, the other for IR.

— We evaluated the differences in library modeling and found that these have
little influence on program analyses. Additionally, we discovered sources of
unsoundness in these frameworks.

— We evaluated the precision for different IRs and found that they have no
impact on the precision of virtual method call elimination.

— We empirically found differences in heap abstractions even for analyses claim-
ing the same levels of context-sensitivity regarding the types of heap objects.
In summary, our empirical study dispels the threats to the validity of the

results of existing works posed by these differences of frameworks. It also dis-
covers novel sources of unsoundness and imprecision in existing frameworks that
provide suggestions that users/developers of these frameworks could incorporate
into their analyses. Although we focus on pointer analysis in the paper, our re-
sults are, in principle, generalizable to many other static analyses, as the findings
presented in this paper also hold for these. We have made the artifacts available
on https://github.com/jpksh90/pointeval to facilitate reproduction.

2 Background and Motivation

The goal of pointer analysis is to determine which objects a variable may refer
(point) to at runtime. A points-to set is a static approximation of this question,
which maps variables to objects that are allocated on the heap (heap objects).
More precisely, if V is the set of variables in a program, and H is the set of heap
objects, then points-to : V.— P(H). points-to(v) returns the set of heap objects
in H referred by v.

Doop is a framework that exclusively focuses on pointer analysis, defines
the analysis’ inference rules in Datalog [41], and is in active development. It
supports tuning of the analysis to adapt for various factors of precision (and
scalability). Doop leverages the program synthesizer Soufflé [12,22]| to resolve
points-to according to the inference rules and the ground facts, which are derived
directly from the program.

Wala [37] and Soot [28] are general-purpose program analyzers providing
some pre-defined analyses and APIs for the development of custom analyses.
Wala comes with various pre-defined pointer analyses [39], some of which feature
novel optimizations to enhance scalability.

A context-sensitive analysis improves a pointer analysis’ precision by discern-
ing method calls based on their calling contexts. Popular notions of contexts
are based on method callsites [23] (callsite-sensitive), invoking objects (object-
sensitive) [19], or hybrids thereof [13].

In the sequel, we explain the need for this study by exemplifying the three
factors that influence the results of pointer analyses.
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Listing 1.1: Factory Method

1 public class Factory {

2 public static void main(String args[]) {

3 AInt a = AInt.getInstance(5);

4 AInt b = AInt.getInstance(7); 1} }

5class AInt {

6 private Integer a; //... getter, setter and constructor
7 public static AInt getInstance(int x) {

8 return new AInt(x); //allocation a@8

93}

Listing 1.2: Soot IR for the main method in Listing 1.1

tpublic class Factory extends java.lang.0bject {

2 //constructor

3 public static void main(java.lang.Stringl[]) {

4 java.lang.String[] rO0;

5 AInt rl1, r2;

6 r0 := Qparameter0: java.lang.Stringl[];

7 rl = staticinvoke <AInt: AInt getInstance(int) >(5);
8 r2 = staticinvoke <AInt: AInt getInstance (int) >(7);
9

return; } }

2.1 Intermediate Representation

Many program analyses tools leverage an intermediate representation (IR) in-
stead of the actual source or bytecode for analysis. IRs remove syntactic sugar
from the source code and make it amenable to analysis by focussing on the fun-
damental operations. Popular strategies for IR generation are based on three-
address code or static single assignment (SSA) form [4]. By default, the Soot
framework uses a three-address-based IR (Jimple) [35], while Wala uses a SSA-
based IR [38]. Both IRs are register-based [36,38], and hence introduce synthetic
variables to mimic the stack-based Java bytecode. Doop can be configured to
leverage either Jimple or Wala’s IR as a frontend for program representation.

Consider the code example in Listing 1.1 and its Jimple IR depicted in List-
ing 1.2. The main method declaration (line 2) translates to the almost identical
line 3 in the IR, whose parameter is translated to the variable @parameter0
(line 6). Due to the additional local variable r0 (line 4), the single main method
argument translates to two variables in the IR. The invocations of the static
method getInstance (lines 3 and 4 of Listing 1.1) are translated to the corre-
sponding operation code staticinvoke with the method name and arguments.
The newly allocated objects returned from these factory method invocations are
stored in the variables r1 and 72.

Wala’s IR generation differs significantly from Soot (see Listing 1.3). As an
SSA-based IR, it does not assign names to method parameters and variables
but ordinal numbers (starting from ‘1’°) called variable numbers (we prepend
‘v’ to these numbers for clarity). Thus, the receiver object (this reference in
Java), or the first parameter in the case of a static method is (silently) assigned
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Listing 1.3: Wala IR for the main method in Listing 1.1

1 Factory.main([Ljava/lang/String;)V

25 = invokestatic < Application, LAInt,
getInstance (I)LAInt; > 3 @1 exception:4

38 = invokestatic < Application, LAInt,
getInstance (I)LAInt; > 6 @7 exception:7

4return

Listing 1.4: Snapshot of pointer analysis results from Doop with different IR

1// Variables in main method with ***xWala***x*

2< <<main method array>> <Factory: void
main(java.lang.String[]) >/v1

3// Variables in main method with ***xSoot***x*

4> <<main method array>> <Factory: void
main(java.lang.String[]) >/@parameter0

5> <<main method array>> <Factory: void
main(java.lang.String[])>/10#_0

the number vI. Further method parameters are assigned subsequent variable
numbers, succeeded by local variables. Again, the static method calls to the
method getInstance are translated to invokestatic, where v3 and v6 hold the
(implicitly defined) constant arguments 6 and 7. The objects returned from the
factory method invocations are stored in the variables v5 and v8. Potential
exceptions thrown in the invoked methods are stored in v4 or v7, respectively.

The differences in program representation influence the metrics of pointer
analysis: We analyzed Listing 1.1 context-insensitively with Doop, using Jimple
and Wala’s IR. The results are shown in Listing 1.4: The main method parameter
object «main method arrays is referred by one variable in Wala (line 2) but
two variables in Soot (lines 4- 5). Even though the average points-to set size is
1 for all variables in Listing 1.4, we found noticeable differences in the average
points-to set sizes in other program’s analyses, with Soot’s frontend the average
size of the points-to set being 2.07 for 3328 variables, and 1.95 for 2298 variables
using Wala’s—Jimple again created more variables than Wala. These subtle
differences in program representation affect the average points-to set size, and
it is unclear whether these two numbers are in fact comparable. In this work,
we aim to investigate the impact of IRs on the precision and scalability of the
analysis (Section 4.3).

2.2 Static modeling of libraries

As a whole program analysis, a pointer analysis does not only requires knowledge
of the program to be analyzed but also the library classes, especially those related
to the runtime. For example, a whole program analysis of a Java application
would require the runtime libraries, such as those in rt.jar, and other dependent
libraries, bundled with the application. Analysis frameworks such as Soot and
Wala construct the class hierarchy based on all classes present in libraries and the
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”

application. They can also remove “irrelevant” classes, favoring scalability over
soundness. Interestingly, we found cases where some frontends do not load all of
the required classes, which induces discrepancies when comparing the analyses.

Consider the program shown in Listing 1.1. To corroborate our intuition,
we analyzed this program context-insensitively with Soot’s and Wala’s front-
ends. Using the former front-end, Doop loads 3,837 classes and computes the
analysis with an average points-to set size of 2.07. With Wala’s front-end, it
loads 19,927 (T5x) classes for analysis with an average points-to set size of
1.95. Further investigating the types of heap objects, we found that Doop with
Wala’s IR contains objects of the class java.security. Privileged ActionEzxception,
which is absent in the analysis with Soot. Note that our simple program contains
no instance of that type, so it must stem from analyzing libraries. In another
instance, Soot loads the classes from javax.crypto, whereas Wala does not. In this
research, we examine the imprecise modeling and discover possible implications
on precision and soundness (sections 4.1 and 4.2).

2.3 Heap Abstraction

Heap abstraction is an important aspect of pointer analysis and determines how
object allocations are statically represented in the analysis. One simple approach
is to create a unique representation for each object allocation site in the pro-
gram (allocation site abstraction). However, at runtime allocation sites can be
executed more than once, creating several objects that are then represented by
the same abstract value. As an example, consider the object allocation (line 8)
of Listing 1.1, represented via a single abstract object, say a@8. In the main
method the newly allocated objects returned by getInstance are captured by the
variables a and b, which would both refer to the abstract object, a@8 in the
result of the pointer analysis. Thus, ¢ and b are spuriously considered aliases
(i.e., refering to the same object.) This imprecision stems from ignoring the
calling-context of getInstance (context-insensitive heap abstraction).

A context-sensitive heap abstraction (a.k.a heap cloning) discerns the ab-
stract® heap-objects based on the calling context, associating the calling context
with the heap object to distinguish the allocations in a pair (allocation site,
call stack). Thus the allocation at line 8 is represented as two heap objects,
(a@8, 3) and (a@8, 4). Without loss of generality, the length of the call stack
can be increased to any finite number, lest the analysis be undecidable. All
state-of-the-art pointer analysis frameworks offer context-sensitive heap abstrac-
tion with a finite context length.

The discussion above demonstrates how the choice of heap abstraction can
(potentially) influence pointer analysis. Therefore, in this work, we study the
frameworks’ heap abstractions. We conducted a preliminary study to gain ini-
tial insights and to validate our intuition, and context-sensitively analyzed List-
ing 1.1 with a one-call-site context-sensitivity in Doop with Wala’s IR, and the
one-call-site sensitive analysis of the Wala framework. Both of these analyses

3 In the sequel we will reference abstract heap objects as heap objects for brevity.
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use a context-sensitive heap abstraction with context length of one. In spite of
that, Wala creates 17 objects while Doop creates 133 objects (T7x). The av-
erage points-to set size varies between 1.55 for the analysis provided by Wala
and 1.62 for Doop with Wala’s IR*. Thus, we can see that even with the same
level of sensitivity in heap abstraction (and IR), analysis results depend on
the framework used. Manual inspection revealed that Wala selectively uses the
context-sensitive heap abstraction, applying contextual heap abstraction only
to non-library classes while treating the library’s objects context-insensitively.
Out of the 17 heap objects, Wala uses context-sensitivity for only 6 objects. In
contrast, Doop leverages context-sensitivity for all heap objects, including the
library’s objects. These initial insights motivated us to analyze the influence of
heap abstraction on precision and scalability in more detail in Section 4.4.

To summarize, the parameters for program analysis such as IR (Section 2.1),
static modeling of libraries (Section 2.2), and heap abstraction (Section 2.3)
affect the precision and scalability of a pointer analysis. Based on initial insights,
we analyze the influence of the mentioned parameters using different frameworks,
frontends, and on a larger and diverse set of benchmark applications.

3 Methodology

3.1 Metrics Used

The precision of a pointer analysis has been defined in numerous ways in the
literature. Some of the metrics for precision available in the literature are the
average size of the points-to sets, the number of call-graph edges, and the number
of resolved virtual calls. These metrics are not clearly superior to one another
but rather tailored to specific clients, for example, the latter is leveraged by
compilers in devirtualization of virtual method calls.

All of these metrics reflect how precisely the analysis computes the points-to
sets (sets of heap objects referred by a variable). For example, whether or not a
virtual call can be resolved depends on the heap objects’ types in the points-to
set of the target variable. If there is only one type (or subtypes thereof that do
not redefine the virtual method) then the virtual call is resolvable. Therefore,
the precision of a client analysis depends on how precisely the points-to set for
each variable in the program can be resolved, in other words, how low the value
of the average points-to set size is. An average size close to one is considered the
hallmark of pointer analysis [27].

Therefore, we leverage the wide-spread metric of average points-to set size for
our evaluation, i.e., the ratio of the total sizes of the points-to sets to the total
number of local variables [26,34]. It permits a client-agnostic comparison of the
pointer analysis, which generalizes our evaluation results to any specific analysis.
We refer to the average points-to set size as precision in this paper. Note that the
actual precision of the analysis is inversely connected to the average points-to

4 Note that due to context-sensitive analysis, the average points-to set size is better
than that mentioned in sections 2.2 and 2.1.
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set size: A lower precision value (i.e. average points-to set size) implies a higher
precision of the computed analysis result, as precise analyses aim at excluding
unrealizable (at runtime) allocation sites from the points-to sets of variables.

An IR may create many synthetic variables, among other reasons for method
parameters or for ¢-nodes at control-flow joins of SSA-form. For example, three-
address code re-uses the same variable in assignments in the if and else blocks
of a conditional. However, SSA-based IRs insert a synthetic variable in a ¢-node
at the control-flow join to select one of the distinct variables of the respective
blocks. The presence of synthetic variables in IRs impedes the comparison of
different analyses using the average points-to set size, as averages depend on
the (unequal) number of variables. Therefore, we devise heuristics to establish
comparability of our metrics for different IRs.

Another challenge in this work is inferring the impact of each analysis param-
eter on its precision. Computed at the end of the analysis, the average points-to
set size loses information on the contribution of a particular aspect of pointer
analysis. Therefore, we require a fine-grained metric to quantify the precision
for each parameter. We propose two such techniques, one for the class hierarchy
and the other for the intermediate representation.

Class Hierarchy The analysis of the program’s class hierarchy builds the foun-
dation for inferring relevant variables and heap allocations. However, each frame-
work leverages a particular strategy to infer classes that contribute to the pro-
gram’s semantics. Adding irrelevant classes to the class hierarchy may manifest
into a synthetically precise analysis, as these classes add to the total number of
variables (which will all be pointing to an empty set), thus potentially decreasing
the average size of points-to sets. Some of these variables and heap allocations
are not part of the actual code executed at runtime, but rather arise out of an
imperfect model of the program analysis framework’s frontend. Here, we study
the variables and heap objects stemming from the additional classes exclusive
to a framework.

We first instrument the Doop framework to log the class hierarchies and
compare the class hierarchies obtained using Soot and Wala as frontends, which
yields the classes exclusive to each of the frameworks. CH go0¢ and CH 41, de-
notes the set of classes in the class hierarchies of Soot and Wala respectively.
CH common = CH sp0t N CH ya1a 1 the set of classes common to both frameworks.
We define CH-precision in terms of the average points-to set size restricted to
variables defined in methods of CH .ommon-

Definition 1. CH-Precision (CP). Let V§ be the set of variables defined in
methods of CH common for the frontend f € {soot,wala}, and H‘Ji(v) ={h|he
points-to(v),v € V?} CH-Precision is the ratio of H} and V§, v.e.,

> Hj(v)

'UEV?

CPp=—L
/ V4]
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If an analysis does not contain any exclusive classes or all of their variables
(and corresponding heap objects) belong to the types present in the set of ex-
clusive classes, CH-precision equals the average points-to set size.

Intermediate Representation (IR) The choice of IR determines a program’s
representation but retains the program’s semantics, particularly with respect to
heap allocations. Thus, different IR’s can differ in the number of variables but
will not introduce additional heap objects (e.g. Listing 1.4).A fundamental differ-
ence between Soot’s Jimple and Wala’s SSA-based IR is that SSA creates unique
variables for each variable definition, while three-address code does not. Render-
ing our precision metric comparable for structurally different IRs is challenging,
as tracking which variables correspond to each other is technically involved and
may not be unique. Therefore, we rely on a heuristic to determine comparable
variables. We motivate the heuristics considering two different IRs for the main
method in Listing 1.1. Jimple (Listing 1.2) defines four variables, r0 — r2, and
parameter0, while Wala’s IR (Listing 1.3) defines three variables: v1 (implicit,
not shown in the listing), v5, v8.

Definition 2. Defm denotes the set of variables defined in a method.
Defm(m,ir) =, cs, , def(si), where Sp i is the set of statements in method

m for ir, def(s;) the variables defined in s;.

Definition 3. Interesting Method. A method m is interesting if | Defm(m, wala)
# |Defm(m, jimple)| and m is defined in class C € CH common, i-€., the number
of variables defined in the method with the same signature vary for different IRs.
M denotes the set of interesting methods.

To determine the set of interesting methods (M) we leverage the logs from
pointer analyses and segregate the variables in the logs according to the declaring
method (m). If the sizes of the corresponding sets differ for a method m, it is con-
sidered interesting. (M is confined to the set of methods defined in CH common t0
exclude the exclusive classes.) Subsequently, we determine the points-to relation
for the variables in M.

Simple average of the heap objects and number of variables is insufficient
for comparing the precision of the analysis between two IRs. Differences in class
hierarchies and aliasing generates new variables, which makes the ratio incompa-
rable if the heap objects are not same. To circumvent this problem, we combine
average points-to set size with ideas from virtual call resolution. The number of
virtual call sites in a program is identical irrespective of the differences in pro-
gram representation (caused by aliasing and redundant variables). Therefore, we
receive a fair comparison if we restrict the average point-to set size to the target
variables of virtual method calls. We define a new metric, average devirtualized
heap objects (H), which is the ratio of the total size of points-to sets of target
variables at the virtual call sites to the number of virtual call sites.

Definition 4. Average devirtualized heap objects (HJ ). For the set of virtual
call-sites C' in the IR of a framework f and Ve 5 as the set of invoking variables
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at C, let H, = points-to(v) be the set of heap objects referred by v € Vg .
Average devirtualized heap objects is

> points-to(v)
V .
Hf _ veVo,f
h C

Based on the above discussion, we formulate and answer the following re-
search questions:
RQ1. How does the class hierarchy vary with the benchmarks?
RQ2. How do differences in class hierarchies affect the precision of analyses?
RQ3. How do the choice of IR affect the precision of the analysis?
RQ4. How do the heap abstractions differ between pointer analysis frameworks?

4 Evaluation

We use Doop version 4.20.7-67 and Wala version 1.5.0. For RQ1-RQ3, we
invoked Doop with the following analysis options: 1-call-site-sensitive,
1-object-sensitive, 2-call-site-sensitive+heap, 2-object-sensitive+
heap. Specific options used in our study for each research questions are de-
scribed in their respective sections. We use the DaCapo [2]| (version 9.12-bach)
benchmarks, a standardized suite of open-source Java applications, for our study.

4.1 RQ1I1: Class hierarchy differences with benchmarks

We captured the class hierarchies considered by the analyses to determine the dif-
ferences. We instrumented Doop to log the classes considered during a (context-
insensitive) analysis, which yields the complete class hierarchy. In order to in-
vestigate whether the class hierarchy depends on the frontend, we performed
this experiment with Soot and Wala as frontend®. Table 1 lists the differences
in the class hierarchies using Soot and Wala. On an average, Wala exclusively
contains ~13,994 classes in its class hierarchy. The number of classes exclusive to
Wala range from 12,524 (Xalan) to 16,707 (Tradebeans). Soot’s class hierarchy
on average contains 26 classes not present in Wala’s, ranging from zero to 62.
In the case of PMD and H3, Soot’s class hierarchy contains only a single ad-
ditional class, Jython has an additional 2 classes. Eclipse, Lusearch, and Luindex
contain 62, 53, 53 additional classes, respectively. In the remaining cases the class
hierarchy in Soot is strictly a subset of Wala’s. In next RQ, we will study the
impact of these additional classes on the precision and scalability of the analysis.

4.2 RQ2: Precision differences with class hierarchy

5 Note that Soot and Wala provide options to exclude certain classes from analysis
(to, e.g., exclude library classes). For a fair comparison we ignore this feature and
compute the whole class hierarchy including libraries.
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Table 1: Difference in classes considered by Soot and Wala. Last two columns
show the extra classes loaded by Soot and Wala respectively.

##classes analyzed |Extra classes
Benchmark| Wala Soot|[Soot  Wala
Avrora 21,997 9,204 0 12,793
Batik 23,461 10,739| 12 12,734
Eclipse 25,718 9,813| 62 15,967
H2 21,007 8,042 1 12,966
Jython 23,323 10,411 2 12914
Lusearch 20,469 4,671 53 15,851
Luindex 20,479 4,681 53 15,851
PMD 21,315 8,517 1 12,799
SunFlow (20,677 7,847 0 12,830
Tradebeans|20,658 3,951 0 16,707
Xalan 22,688 10,164 0 12,524

Study Setup We have used the var-points-to relation, which maps all vari-
ables and context pairs to their resolved pairs of heap-object and context. We
select those variables that originate from classes common to both frameworks
(Section 4.1) and query their points-to information. We then compute the CH —
Precision based on Definition 1.

Results Table 2 presents the results of the analysis (for one-callsite, one-object,
and two-object context-sensitivity) for the objects and variables belonging to ex-
clusive classes present in Wala (only non-zero values included). Note that the
two-object sensitive analysis did not terminate for Eclipse and Jython, there-
fore, these are not presented in the table. In one-callsite and one-objects analy-
sis, Table 2 lists six out of eleven benchmarks contain variables that belong to
the exclusive class hierarchy. The remaining benchmark applications show no
differences in the number of variables and heap-objects, despite the presence
of additional classes. It demonstrates that the additional classes loaded by the
these frameworks have no influence on the precision of these benchmarks.

The third and fourth columns of Table 2 list the number of variables (in
principle, variable-context pairs) and heap objects belonging to the set of exclu-
sive classes, respectively. In all analyses, all but one benchmark have a higher
average points-to set size for exclusive variables than the general average. Trade-
beans only creates 3 additional heap objects with Wala’ frontend, therefore the
analyses are almost identical for both frontends. The average points-to sets for
exclusive classes for bigger benchmarks such as Eclipse and Jython are outliers,
showing very high averages. Still, the contribution of exclusive classes’ heap ob-
jects and variables is negligible compared with the total heap objects of these
benchmarks.

The eighth and ninth columns depict the CH-precision and the original pre-
cision for the analyses. We observe that the CH-precision is slightly lower than
the precision for all benchmarks but tradebeans, which originates from the addi-
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Table 2: Differences in precision in the presence of additional objects in class
hierarchy (Wala). HO denotes the sum of number of heap objects in points-to
set. CP a0 is the precision score for variables in CH common -

Exclusive classes Original
Analysis Benchmark || Vars. HO Average Vars. HO Precision|| CP yaia
1CS avrora 19 297  15.63 96,680 883,798 9.141|| 9.140
eclipse 453 171,071 377.64((1,231,854 61,556,548  49.970|| 49.850
h2 31 321 10.35 78,154 639,202 8.178|| 8.177
jython 35 17,682  505.2|| 289,244 8,000,917  27.661|| 27.603
tradebeans 3 3 1 59,853 549,391 9.179|| 9.179
xalan 39 2,466  63.23|| 147,488 1,911,750 12.962|| 12.948
108 avrora 19 14,844 781.26 82,972 404,231 4.871|| 4.694
eclipse 388 329,008 847.95((1,053,618 46,337,474  43.979|| 43.683
h2 31 2747  88.61 59,800 220,058 3.679|| 3.635
jython 35 147,214 4,206.11|| 573,823 22,152,008  38.604| 38.35
tradebeans 3 4 1.33 45,807 154,883 3.381|| 3.381
xalan 39 13,831 354.64|| 199,404 1,576,762 7.907| 7.839
208 avrora 19 1752  92.21|| 119,805 348,368 2.907|| 2.893
h2 31 1195  38.54 82,795 242,667 2.930|| 2.917
tradebeans 3 4 1.33 57,200 197,808 3.458| 3.458
xalan 55 4268 77.6| 362,885 1,733,576 4.777|| 4.766

Table 3: Differences in precision in the presence of additional objects in class
hierarchy for Eclipse (Soot).

Variables Heap Objects|CP o0 Original

1-call-site|Exclusive Classes 786 3331 44.95 -
Original 1.56M 68.5M - 44.92

1-object |Exclusive Classes 1020 4130( 44.90 -
Original 1.3M 60.8M - 44.87

tional heap objects and variables. These primarily belong to the internal libraries
such as sun.util, sun.util.resources (discussed later).

With the Soot frontend (Table 3), the CH-Precision differs from Precision
only for the benchmark Eclipse, for the other benchmarks the analysis does
not contain any objects where the type belongs to the exclusive classes of the
frontend. However, it is difficult to compare the precision of Soot v/s Wala on
CH-Precision score due to differing variable numbers for the same benchmark
application.

Finding 1: Differences in class-hierarchy mnegligibly impact the pointer
analysis precision (and thus client analyses).

Soundness In our observation, the Wala frontend takes the internal Java libraries
into account. We find heap objects belonging to libraries such as sun.nio.fs,
sun.util.resources, sun.security, and sun.nio.cs, which are internal libraries used
by the JVM. Soot, on the other hand, does not model these libraries for analysis.

Comparing the class hierarchies of the analyses using Soot and Wala, we ob-
served that the class hierarchy using Soot as frontend is a subset of Wala’s for all
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Table 4: Total (for each framework) and interesting (section 4.3) methods M.

Benchmark 1-CS 1-0S 2-0OS

Soot Wala M| Soot Wala  M|Soot Wala M
Avrora 3651 3678 3194| 3642 3669 3187(3615 3642 3159
Batik 3407 3415 3006| 3398 3406 2999|3285 3293 2895
Eclipse 20339 20281 18723(20261 20204 18655| Timed out
H2 3041 3091 2673| 3027 3075 2661[2985 3029 2616
Jython 8482 8531 7672| 8447 8494 7643| Timed out

Lusearch 2449 2457 2135| 2440 2448 2128|2414 2422 2103
Luindex 3524 3532 3132| 3514 3522 3124|3466 3474 3081

PMD 4587 4596 4131| 4577 4586 4124|4418 4427 3978
Sunflow 8369 8384 7514| 8335 8350 7475|7740 7754 6928
Tradebeans|| 2442 2406 2083| 2433 2397 2076|2407 2371 2051
Xalan 4607 5701 4125| 4597 5678 4115]4502 5503 4031

benchmarks except Eclipse. This suggests that analyses with Soot are as sound
as analyses with Wala for all benchmarks except Eclipse. Eclipse is a compelling
case: Its analysis using Soot contains heap objects and variables that belong to
the internal libraries of Eclipse, such as org.eclipse.core.internal.runtime. Perfor-
manceStatsProcessor, while the analyses with Wala does not report these objects.
However, results from the analyses with Wala contain heap objects from the in-
ternal libraries such as sun.util. ¥, which are not present using Soot. It shows
that the class hierarchy model is unsound in both frontends, as both lack some
of the classes loaded by these benchmark applications at runtime.

Our study reveals that library modeling in both Soot and Wala is unsound
even for (non-native) Java objects, shown by the presence of heap-objects
belonging to the exclusive classes of Soot and Wala.

4.3 RQ3: Precision for IR varies with the framework

Study Setup The study setup is similar to Section 4.2. We use the application’s
var-points-to sets, i.e., the relation of variables and heap objects excluding the
library objects. From the results of the three analysis sensitivities, we extract the
set of interesting methods (M, Def. 3) and compute the average devirtualized
heap objects score for the virtual calls in interesting methods. We use the Jimple
IR (--no-ssa option in Doop), and Wala’s IR (--wala-fact-gen option in
Doop) for evaluation.

Results Table 4 reports the number of interesting methods and total methods
resolved using both frontends. Note that the number of interesting method is
identical for both frameworks for the same type of context-sensitivity. The num-
ber of reachable methods in each analysis differs, just as the number of distinct
methods signatures discovered in each framework (columns Soot, Wala in 1-CS,
1-08, 2-0S5). However, deriving a relationship between those is impossible, as

5 We excluded 2-CS for its large file sizes.
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Table 5: Results for IR. Third and fifth columns are the number of heap objects.
Fourth and sixth columns are the number of virtual calls. Last two columns lists
the average devirtualized heap objects (HJ) for Soot and Wala respectively.

Soot Wala 22
Analysis Benchmark||Heap Objs. Virt. Calls|Heap Objs. Virt. Calls|| Soot Wala
1 call-site Avrora 7,684 3499 7759 3499|| 2.20 2.22
sensitive Batik 2,645 1588 2702 1588(| 1.67 1.70
Eclipse 7.TM 56.8K 7.9M 56.8K||136.33 139.24
H2 1,936 1,434 1,988 1,434 1.35 1.39
Jython 662K 9,286 656K 9,283|| 71.33 70.67
Lusearch 1,667 1,139 1,674 1,139|| 1.46 1.47
Luindex 8,090 4408 8,098 4,408|| 1.84 1.84
PMD 8,518 3,527 8,708 3,527|| 2.42 247
Sunflow 4,741 2,088 4,627 2,088 2.27 222
Tradebeans 1,638 1,114 1,649 1,106|| 1.47 1.49
Xalan 43K 5,832 55K 5,850| 7.45 9.44
1 object  Avrora 6,561 3,498 6,563 3,498(| 1.88 1.88
sensitive Batik 1,673 1,587 1,709 1,587(| 1.05 1.08
Eclipse 2.9M 56.7K 3.0M 56.8K|| 51.61 53.53
H2 1,218 1,433 1,258 1,433|| 0.85 0.88
Jython 3.5K 9,272 3.6K 9,269(386.79 389.20
Lusearch 958 1,138 964 1,138|| 0.84 0.85
Luindex 4,530 4,407 4,552 4,407 1.03 1.03
PMD 7,369 3,527 7,518 3,527|| 2.09 2.13
Sunflow 2,978 2,088 2,864 2,088|| 1.43 1.37
Tradebeans 928 1,113 938 1,105(| 0.83 0.85
Xalan 99K 5,830 106K 5,810 17.11 18.33
2 object  Avrora 8,561 3,459 8,563 3,459(| 247 2.48
sensitive Batik 1,257 1,567 1,275 1,567(| 0.80 0.81
H2 1,288 1,433 1,307 1,433|| 0.90 0.91
Luindex 5,210 4,363 5,215 4,363|| 1.19 1.20
Lusearch 948 1,138 954 1,138|| 0.83 0.84
PMD 7,271 3,496 7,398 3,496|| 2.08 2.12
Sunflow 2,342 2,088 2,324 2,088|| 1.12 1.11
Tradebeans 919 1,113 929 1,105|| 0.83 0.84
Xalan 214K 5,791 215K 5,771|| 36.97 37.36

analyses such as one-call-site and one-object are not comparable. In all cases, we
observed that the majority (T90%) of the methods are interesting. Therefore,
we cannot ignore the significance of this aspect.

Interesting methods are difficult to ignore because of their sheer presence in
the benchmarks applications.

Table 5 presents the differences in the average devirtualized heap objects
for Jimple and Wala IR. Although the number of variables and abstract heap
locations are dependent on the IR, we did not observe many differences between
those when restricting ourselves to target variables of virtual method calls, which
corresponds to our intuition. The differences in the H; values for both IRs
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Table 6: Differences Soot IR v/s Wala IR for Xalan

Methods Wala|Soot |Actual
org.apache.xalan.transformer. TransformerImpl.transformNode() | ¢ | % v
Exceptions vV | % 4
org.apache.xalan.xsltc.trax. TransformerFactorylmpl.setFeature()| % | ¢ 4
MethodResolver.getConstructor() v | % v
xerces.xml.dtd. XMLDTDLoader() v | % —
org.apache.xpath.getSourceTree() v | % v

Listing 1.5: Differences in types of heap objects created in both analysis

1 (Wala) sun.misc.URLClassPath$Loader
2 (Wala) java.util.zip.ZipError
3(Soot) javax.xml.transform.FactoryFinder$ConfigurationError

are negligible except for three larger benchmarks, Jython, Eclipse, and Xalan.
Overall, the values from Soot IR were smaller than those of Wala, implying
that devirtualization in Soot is either slightly more precise or slightly less sound
than in Wala, however, the differences are minor in the majority of the cases. In
conclusion, the choice of IR shows little to no impact on the precision of pointer
analysis. In the sequel, we describe one such case study where the difference in
H/ is approximately two, which is a significant figure as compared to others.

Finding 2: IR has negligible impact on the precision of pointer analysis at
least for the devirtualization client.

Case Study—Xalan To further investigate the differences, we chose Xalan using
a one-call-site analysis as the H; values for Soot (7.45) and Wala (9.44) display
the highest difference among all benchmarks. The number of heap objects in
both cases differs significantly, with Soot having 43K heap objects, and Wala
having 55K heap objects for a comparable number of virtual calls (5,832 vs.
5,850).

To examine the heap objects, we collected their class types. We observed that
the types of some of these objects belongs to the classes in CH g0\ CH common OF
CH waia\CH common- Listing 1.5 depicts the differences in heap objects created
by these frameworks.

We also discovered (potential) sources of imprecision and unsoundness in
both analyses. Table 6 lists methods and exceptions missed by both Soot and
Wala frameworks. Note that these methods and exceptions belong to the com-
mon class hierarchy. We observed that Wala has precise exception modeling
compared to Soot. For other virtual methods invocations, we compared the run-
time call-graph to the static call-graph. In our observation, both Wala and Soot
are unsound, as demonstrated by the absence of certain method calls in the call-
graph for both analyses. In addition, Wala imprecisely includes xerces.xml .dtd.
XMLDTDLoader () into its call-graph (which at least in our experiments was not
executed at runtime).
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Apart from reflection, imprecise/unsound virtual call resolution also induces
imprecision/unsoundness into the analysis.

4.4 RQ4: Heap abstractions in pointer analysis frameworks

In this section, we compare Doop’s Table 7: Number of Heap objects
analysis using Wala’s frontend with :
Wala’s own analysis. We omit the #Heap Objects| #Types

comparison with the Soot frame- [BenchmarkjDoop Wala|Doop Wala

work as it leverages IRs different |avrora 2,504  28,235| 751 3,256
from Wala’s and thus would not be |batik 1,699 16,724 537 1,938
comparable. h2 1,467 16,688 482 1,934
lusearch 1,242 16,274] 551 1,898
luindex 1,901 19,343 404 2,250
pmd 2,398 31,774 734 2,498
sunflow 4,424  16,688/1,196 1,934
heap objects for each call-site, heap tradebeans | 1,230 16,734] 405 1,937
cloning) analysis available in the xalan 3,874  18,174]1,003 2,078
Wala framework with a one-call-site with one-level heap abstraction in Doop,
and set the time budget to 7 hours. Analyses with a higher level of call-site sensi-
tivity were not scalable in the Wala framework and therefore, we do not leverage
those. Other optimizations in Wala, such as the use of object-sensitivity only for
collection objects, are not comparable to the object-sensitive analysis available
in Doop. Therefore, we also choose to ignore it. To handle reflective calls in Wala,
we use the option REFLECTIONS.FULL. In what follows, we present the results of
our study. We first present the differences in the number of heap objects and,
subsequently, delve into its implications.

Study Setup We compare the
one-call-site sensitive with context-
sensitive heap abstraction (unique

Differences in the heap objects For evaluation, we extracted the heap-objects cre-
ated in Wala’s and Doop’s analyses and observe huge differences in the number of
heap objects created. Intuitively, using the same level of heap-sensitivity (heap-
cloning) should create the same number of heap objects. However, in certain
cases, the number of heap objects in Wala exhibits a factor of ~14 compared to
those in Doop (columns 2 and 3 in 7). (Note that eclipse and jython are elided,
as the analyses did not terminate within the time budget owing to the large
file size (T100GB).) Therefore, the heap abstractions of these analyses are not
comparable, although superficially they look similar.

Subtle optimizations also manifests into imprecise heap modeling even
though, at the outset, they look similar.

To investigate this further, we compared the the types of the heap objects.
Our study shows that the set of types are not even consistent using the same
frontend! In many cases the types of objects analyzed by Wala is approximately
four times those in Doop (columns 4 and 5 in Table 7). The differences in heap
abstraction for application level objects build the reason for this.
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Application level objects Application level objects, i.e., the heap objects cre-
ated due to allocations within the program (rather than libraries.) In three out
of eleven benchmarks we observe that Doop’s analysis is lacking application
level classes that Wala reports. We found corresponding allocations on a man-
ual inspection of the source code. For example, in avrora, the analysis in Wala
allocates heap objects of BRNE builder [8], which are not present in Doop’s.
Similar cases can be found in PMD and Xalan. However, owing to the limita-
tions of the program representation, we could not determine the precise reason
for the unsoundness. Pointer analysis uses an IR based on a control flow graph
(CFG) rather than source code. Being a lower level representation of the program
source code the IR mangles variables names. Therefore, a one-to-one correspon-
dence between the IR’s variables and variables in source code is not trivial.

Finding 3: Heap modeling is not similar even for allocations within the
application scope. Wala handles application levels objects more precisely than
Soot in our evaluation.

5 Threats to Validity

Naturally, the technique used relies on the precise handling of reflection calls and
other dynamic features of the languages such as dynamic proxies. Other than
that, handling of native calls could alleviate the unsoundness of the analyses.
Analysis of native calls could infer the native objects in JVM missed by the Soot
framework. Here, we have used the TamiFlex framework for handling reflection
calls. Other approaches have improved the reflection handling [10,15-18,25]. To
convince ourself, we experimented with one of the state-of-the-art techniques,
i.e., reflection with matching substring resolution [10]. However, we did not find
any significant differences in results. Another limitation of this study is the un-
soundness from ignoring the native library calls in static analyses. Few of the
sources of unsoundness discovered stem from the native calls. Recently, Four-
tounis et al. [7] proposed a technique for resolving native calls in Java. However,
at the time of writing this paper, the technique was not available. Further, our
analysis in Section 4.3 is based on test-cases which may not reflect all possible
executions of an application.

Our study also involves hours of manual evaluation which can be subject to
bias. To counteract it, we did a manual inspection of the source code, especially
for the sources of unsoundness. We had rerun the benchmark applications with
valid inputs to determine to compare and reassert that the objects are actually
allocated during runtime.

6 Related Work

Pointer analysis tools Pointer analysis has garnered significant interest in the
last decades, focussing on scalability, precision, and soundness. The Doop sys-
tem used in this paper results from years of research on declarative-style pointer
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analysis [1,3,10,24,26]. Similarly, the Wala framework was a result of an indus-
trial project and, unlike Doop, follows an imperative paradigm. The underlying
program representation comes with many prior assumptions mentioned. In this
work, we study the effects of these assumptions on program analysis.

Empirical studies on pointer analysis Recent empirical studies focussed on the
soundness limitations from dynamic features of languages in existing pointer
analyses and call-graph construction as pointer analysis and call-graph con-
struction are closely related static analyses and are mutually dependent. Di-
etrich et al. [5] proposed automated and manual techniques to generate un-
soundness oracles to test static analysis. Sui et al. [32] present the causes of
unsoundness in static analysis frameworks (Soot, Wala, and Doop) due to the
dynamic features of languages. Rief et al. [21] did a comprehensive study, fo-
cussed on features in Java 9, for call-graph generation algorithms and expose the
problems in the state-of-the-art esp. related to method calls in the Java runtime.
Our work is orthogonal: we evaluate the influence of program representation on
program analyses. Here, we rather focus on the program representation in static
analysis frameworks and also the unsoundness arising out of it. Our study is also
extensible for Java 9.

Sui et al. [33] evaluated the recall of call-graph construction and present
how it impacts the algorithms in practice. Their evaluation expose the problems
in the state-of-the-art esp. related to method calls in the Java runtime. Our
unsoundness results concur with theirs. Here, we have focussed on program rep-
resentation rather than the dynamic features of the language, which are hard to
analyze for static analyzers. Further, our work features two novel metrics apart
from the standard precision and recall, to measure the impact of different aspects
of program representation.

7 Conclusion

This paper reports the effects of program representation on program analysis.
Our metrics makes it possible to compare implementations leveraging different
frontends. We find that differences in program representation have negligible im-
pact on the precision of the pointer analysis. In addition, we also discovered novel
sources of unsoundness and imprecision in the program analysis. Our results also
demonstrate that the promised heap abstraction are practically not similar, even
though they may appear so on a birds eye view. Since pointer analysis builds the
foundation of many static analyses, we conjecture the results generalize these,
as well.
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